
CSE341, Fall 2011, Lecture 22 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

We have seen that the essence of object-oriented programming is inheritance, overriding, and dynamic
dispatch. All our examples have been classes with 1 (immediate) superclass. But if inheritance is so useful
and important, why not allow ways to use more code defined in other places such as another class. In this
lecture we consider 3 related but distinct ideas:

• Multiple inheritance: Languages with multiple inheritance let one class extend multiple other classes.
It is the most powerful option, but there are some semantic problems that arise that the other ideas
avoid. Java and Ruby do not have multiple inheritance; C++ does.

• Java-style interfaces: Java classes have one immediate superclass but can “implement” any number of
interfaces. Because interfaces do not provide behavior — they only require that certain methods exist
— most of the semantic problems go away. Interfaces are fundamentally about type-checking, which
we will study more in the future lectures, so there very little reason for them in a language like Ruby.
C++ does not have interfaces because inheriting a class with all “abstract” methods (or “pure virtual”
methods in C++-speak) accomplishes the same thing as described more below.

• Mixins: Ruby allows a class to have one immediate superclass but any number of mixins. Because a
mixin is “just a pile of methods,” many of the semantic problems go away, but it provides behavior
unlike Java interfaces. Mixins do not help with all situations where you want multiple inheritance, but
they have some excellent uses. In particular, elegant uses of mixins typically involve mixin methods
calling methods that they assume are defined in all classes that include the mixin. Ruby’s standard
libraries make good use of this technique and your code can too.

Multiple Inheritance:

To understand why multiple inheritance is potentially useful, consider two classic examples (also available
in Ruby in the accompanying code file):

• Consider a Point2D class with subclasses Point3D (adding a z-dimension) and ColorPoint (adding a
color field). To create a ColorPoint3D class, it would seem natural to have two immediate superclasses,
Point3D and ColorPoint.

• Consider a Person class with subclasses Artist and Cowboy. To create an ArtistCowboy (someone
who is both), it would seem natural again to have two immediate superclasses. Note, however, that
both the Artist class and the Cowboy class have a method “draw” that have very different behaviors
(creating a picture versus producing a gun).

If we have multiple inheritance, we have to decide what it means. Naively we might say that the new class
has all the fields and methods of all the superclasses. However, if two of the immediate superclasses have
the same fields or methods, what does that mean? Does it matter if the fields or methods are inherited from
the same common ancestor? Let us explain these issues in more detail before returning to our examples.

With single inheritance, the class hierarchy — all the classes in a program and what extends what — forms
a tree, where A extends B means A is a child of B in the tree. With multiple inheritance, the class hierarchy
may not be a tree. Hence it can have “diamonds” — four classes where one is a (not necessarily immediate)
subclass of two others that have a common (not necessarily immediate) superclass. By “immediate” we

1

mean directly extends (child-parent relationship) whereas we could say “transitive” for the more general
ancestor-descendant relationship.

With multiple superclasses, we may have conflicts for the fields / methods inherited from the different
classes. The draw method for ArtistCowboys is an obvious example where we would like somehow to have
both methods in the subclass, or potentially to override one or both of them. At the very least we need
expressions using super to indicate which superclass is intended. But this is not necessarily the only conflict.
Suppose the Person class has a pocket field that Artists and Cowboys use for different things. Then perhaps
an ArtistCowboy should have two pockets, even though the creation of the notion of pocket was in the
common ancestor Person.

But if you look at our ColorPoint3D example, you would reach the opposite conclusion. Here both Point3D
and ColorPoint inherit the notion of x and y from a common ancestor, but we certainly don’t want a
ColorPoint3D to have two x methods or two @x fields.

These issues are some of the reasons language with multiple inheritance (most well-known is C++) need fairly
complicated rules for how subclassing, method lookup, and field access work. For example, C++ has (at
least) two different forms of creating a subclass. One always makes copies of all fields from all superclasses.
The other makes only one copy of fields that were initially declared by the same common ancestor. (This
solution would not work well in Ruby, which doesn’t have explicit field declarations.)

Java-style interfaces:

In Java, a class can only have one superclass but it can implement any number of interfaces. An interface
is just a list of methods and each method’s argument types and return type. A class type-checks only if it
actually provides (directly or via inheritance) all the methods of all the interfaces it claims to implement.
An interface is a type, so if a class C implements interface I, then we can pass an instance of C to a method
expecting an argument of type I, for example. Interfaces are closer to the idea of “duck typing” than just
using classes as types, but they still require being named and a class has some interface type only if the class
definition explicitly says it implements the interface. We will talk more about OO typing in future lectures.

Because interfaces do not actually define methods — they only name them and give them types — none of the
problems discussed above about multiple inheritance arise. If two interfaces have a method-name conflict, it
doesn’t matter — a class can still implement them both. If two interfaces disagree on a method’s type, then
no class can possibly implement them both but the type-checker will catch that. And in a dynamically typed
language, there is really little reason to have interfaces.1 We can already pass any object to any method
and call any method on any object. It is up to us to keep track “in our head” (preferably in comments as
necessary) what objects can respond to what messages. The essence of dynamic typing is not writing down
this stuff.

Bottom line: Implementing interfaces does not inherit code; it is purely related to type-checking in statically
typed languages like Java and C#. So Ruby does not need interfaces.

Also note that languages with abstract methods and multiple inheritance do not need interfaces. An abstract
method (called a pure virtual method in C++) is a method that is promised to exist in all instances of some
class but is not defined by the class. Hence any subclass that is actually used to create objects must
override this method or inherit from a class that does. (So a class with an abstract method cannot have its
constructor used.) Now, if some class has only abstract methods, that is essentially an interface. Conflicts
aren’t a problem since the method definition does not actually exist — a non-abstract method can trivially
“win” over an abstract method. Java has abstract classes and we can define classes with all abstract methods,
but Java still needs a separate notion of interfaces because of single inheritance: we want to allow classes to
implement multiple interfaces.

1Probably the only use would be to change the meaning of Ruby’s is a? to incorporate interfaces, but we can more directly
just use reflection to find out an objects methods.

2

Bottom line: Abstract classes and multiple inheritance can accomplish everything that interfaces accomplish.
So C++ does not need interfaces.

Mixins:

Ruby has mixins, which are somewhere between multiple inheritance and interfaces. They provide actual
code to classes that include them, but they are not classes themselves, so they do not have constructors or a
separate notion of fields. Ruby did not invent mixins. Its standard-library makes good use of them, though.

To define a Ruby mixin, we use the keyword module instead of class. (Modules do a bit more than just
serve as mixins, hence the strange word choice.) For example, here is a mixin for adding color methods to a
class:

module Color
attr_accessor :color
def darken
self.color = "dark " + self.color

end
end

This mixin defines three methods, color, color=, and darken. A class definition can include these methods
by using the include keyword and the name of the mixin. For example:

class ColorPt < Pt
include Color

end

This defines a subclass of Pt that also has the three methods defined by Color. Such classes can have other
methods defined/overridden too; here we just chose not to add anything additional. This is not necessarily
good style for a couple reasons. First, our initialize (inherited from Pt) does not create the @color field,
so we’re relying on clients to call color= before they call color or they will get nil back. So overriding
initialize is probably a good idea. Second, mixins that use instance variables are a bit questionable
stylistically. As you might expect in Ruby, the instance variables they use will be part of the object the
mixin is included in. So if there is a name conflict with some intended-to-be separate instance variable
defined by the class, the two separate pieces of code will mutate the same data. After all, mixins are “very
simple” — they just define a collection of methods that can be included in a class.

Now that we have mixins, we also have to reconsider our method lookup rules. We have to choose something
and this is what Ruby chooses: If obj is an instance of class C and we send message m to obj,

• First look in the class C for a definition of obj.

• Next look in mixins included in C. Later includes shadow earlier ones.

• Next look in C’s superclass.

• Next look in C’s superclass’ mixins.

• Next look in C’s super-superclass.

• Etc.

Many of the elegant uses of mixins do the following strange-sounding thing: They define methods that call
other methods on self that are not defined by the mixin. Instead the mixin assumes that all classes that
include the mixin define this method. For example, consider this mixin that lets us “double” instances of
any class that has + defined:

3

module Doubler
def double
self + self # uses self’s + message, not defined in Doubler

end
end

If we include Doubler in some class C and call double on an instance of the class, we will call the + method
on the instance, getting an error if it is not defined. But if + is defined, everything works out. So now we
can easily get the convenience of doubling just by defining + and including the Doubler mixin. For example:

class AnotherPt
attr_accessor :x, :y
include Doubler
def + other # add two points
ans = AnotherPt.new
ans.x = self.x + other.x
ans.y = self.y + other.y
ans

end
end

Now instances of AnotherPt have double methods that do what we want. We could even add double to
classes that already exists:

class String
include Doubler

end

Of course, this example is a little silly since the double method is so simple that copying it over and over
again wouldn’t be disastrous.

The same idea is used a lot in Ruby with two mixins named Enumerable and Comparable. What Comparable
does is provide methods =, !=, >, >=, <, and <=, all of which assume the class defines <=>. What <=> needs
to do is return a negative number if its left argument is less than its right, 0 if they are equal, and a
positive number if the left argument is greater than the right. So now a class doesn’t have to define all these
comparisons — it just defines <=> and includes Comparable. Consider this example for comparing names:

class Name
attr_accessor :first, :middle, :last
include Comparable
def initialize(first,last,middle="")
@first = first
@last = last
@middle = middle

end
def <=> other
l = @last <=> other.last # <=> defined on strings
return l if l != 0
f = @first <=> other.first
return f if f != 0
@middle <=> other.middle

4

end
end

Defining methods in Comparable is easy, but we certainly wouldn’t want to repeat the work for every class
that wants comparisons. For example, the > method is just:

def > other
(self <=> other) > 0

end

The Enumerable module is where many of the useful block-taking methods that iterate over some data
structure are defined. Examples are any?, map, and inject. They are all written assuming the class has
the method each defined. So a class can define each, include the Enumerable mixin, and have all these
convenient methods. So the Array class for example can just define each and include Enumerable. Here is
another example for a range class we might define:2

class MyRange
include Enumerable
def initialize(low,high)
@low = low
@high = high

end
def each
i=@low
while i <= @high
yield i
i=i+1

end
end

end

Now we can write code like MyRange.new(4,8).inject {|x,y| x+y}. Note that the map method in
Enumerable always returns an instance of Array. After all, it doesn’t “know how” to produce an instance
of any class, but it does know how to produce an array containing one element for everything produced by
each. We could define it in the Enumerable mixin like this:

def map
arr = []
each {|x| arr.push x }
arr

end

Mixins are not as powerful as multiple inheritance because we have to decide upfront what to make a class
and what to make a mixin. Given Artist and Cowboy classes, we still have no natural way to make an
ArtistCowboy. And it’s unclear which of Artist or Cowboy or both we might want to define in terms of a
mixin.

2We wouldn’t actually define this because Ruby already has very powerful range classes.

5

