
CSE341: Programming Languages

Lecture 21
Late Binding;

OOP as a Racket Pattern

Dan Grossman
Fall 2011

Today

Dynamic dispatch aka late binding aka virtual method calls
– Call to self.m2() in method m1 defined in class C can

resolve to a method m2 defined in a subclass of C
– Most unique characteristic of OOP

Need to define the semantics of objects and method lookup as
carefully as we defined variable lookup for functional programming

Then consider advantages, disadvantages of dynamic dispatch

Then encoding OOP / dynamic dispatch with pairs and functions
– In Racket
– Complement Lecture 9's encoding of closures in Java or C

Fall 2011 2 CSE341: Programming Languages

Resolving identifiers

The rules for "looking up" various symbols in a PL is a key part of
the language's definition

– So discuss in general before considering dynamic dispatch

• ML: Look up variables in the appropriate environment
– Key point of closures' lexical scope is defining "appropriate"
– Field names (for records) are different

• Racket: Like ML plus let, letrec, and hygienic macros

• Ruby:
– Local variables and blocks mostly like ML and Racket
– But also have instance variables, class variables, and

methods (all more like record fields)
Fall 2011 3 CSE341: Programming Languages

Ruby instance variables and methods

• self maps to some "current" object
• Look up local variables in environment of method
• Look up instance variables using object bound to self
• Look up class variables using object bound to self.class

A syntactic distinction between local/instance/class means there is no
ambiguity or shadowing rules

– Contrast: Java locals shadow fields unless use this.f

But there is ambiguity/shadowing with local variables and zero-
argument no-parenthesis calls

– What does m+2 mean?
• Local shadows method if exists unless use m()+2
• Contrast: Java forces parentheses for syntactic distinctions

 Fall 2011 4 CSE341: Programming Languages

Method names are different

• self, locals, instance variables, class variables all map to objects

• Have said "everything is an object" but that's not quite true:
– Method names (more like ML field names)
– Blocks
– Argument lists

• First-class values are things you can store, pass, return, etc.

– In Ruby, only objects (almost everything) are first-class
– Example: cannot do e.(if b then m1 else m2 end)

• Have to do if b then e.m1 else e.m2 end
– Example: can do (if b then x else y).m1

Fall 2011 5 CSE341: Programming Languages

Ruby message lookup
The semantics for method calls aka message sends

e0.m(e1,…,en)
1. Evaluate e0, e1, …, en to objects obj0, obj1, …, objn

– As usual, may involve looking up self, variables, fields, etc.
2. Let C = the class of obj0 (every object has a class)
3. If m is defined in C, pick that method, else recur with the superclass

of C unless C is already Object
– If no m is found, call method_missing instead

• Definition of method_missing in Object raises an error
4. Evaluate body of method picked:

– With formal arguments bound to obj1, …, objn
– With self bound to obj0 -- this implements dynamic dispatch!

Note: Step (3) complicated by mixins: will revise definition later

Fall 2011 6 CSE341: Programming Languages

Java method lookup (very similar)

Fall 2011 7 CSE341: Programming Languages

The semantics for method calls aka message sends
e0.m(e1,…,en)

1. Evaluate e0, e1, …, en to objects obj0, obj1, …, objn
– As usual, may involve looking up this, variables, fields, etc.

2. Let C = the class of obj0 (every object has a class)
3. [Complicated rules to pick "the best m" using the static types of e0,

e1, …, en]
– Static checking ensures an m, and in fact a best m, will always be

found
– Rules similar to Ruby except for this static overloading
– No mixins to worry about (interfaces irrelevant here)

4. Evaluate body of method picked:
– With formal arguments bound to obj1, …, objn
– With this bound to obj0 -- this implements dynamic dispatch!

The punch-line again

e0.m(e1,…,en)

To implement dynamic dispatch, evaluate the method body with
self mapping to the receiver

• That way, any self calls in the body use the receiver's class,

– Not necessarily the class that defined the method

• This much is the same in Ruby, Java, C#, Smalltalk, etc.

Fall 2011 8 CSE341: Programming Languages

Comments on dynamic dispatch

• This is why last lecture's distFromOrigin2 worked in
PolarPoint
– distFromOrigin2 implemented with self.x, self.y
– If receiver's class is PolarPoint, then will use PolarPoint's
x and y methods because self is bound to the receiver

• More complicated than the rules for closures
– Have to treat self specially
– May seem simpler only because you learned it first
– Complicated doesn't imply superior or inferior

• Depends on how you use it…
• Overriding does tend to be overused

Fall 2011 9 CSE341: Programming Languages

A simple example, part 1
In ML (and other languages), closures are closed

So we can shadow odd, but any call to the closure bound to odd
above will "do what we expect"

– Doesn't matter if we shadow even or not

Fall 2011 10 CSE341: Programming Languages

fun even x = if x=0 then true else odd (x-1)
and odd x = if x=0 then false else even (x-1)

(* does not change odd – too bad; this would
improve it *)

fun even x = (x mod 2)=0

(* does not change odd – good thing; this would
break it *)

fun even x = false

A simple example, part 2
In Ruby (and other languages), subclasses can change the
behavior of methods they don't override

Fall 2011 11 CSE341: Programming Languages

class A
 def even x
 if x==0 then true else odd (x-1) end
 end
 def odd x
 if x==0 then false else even (x-1) end
 end
end
class B < A # improves odd in B objects
 def even x ; x % 2 == 0 end
end
class C < A # breaks odd in C objects
 def even x ; false end
end

The OOP trade-off

Any method that makes calls to overridable methods can have its
behavior changed in subclasses even if it is not overridden

– Maybe on purpose, maybe by mistake

• Makes it harder to reason about "the code you're looking at"

– Can avoid by disallowing overriding (Java final) of helper
methods you call

• Makes it easier for subclasses to specialize behavior without
copying code
– Provided method in superclass isn't modified later

Fall 2011 12 CSE341: Programming Languages

Manual dynamic dispatch
Rest of lecture: Write Racket code with little more than pairs and
functions that acts like objects with dynamic dispatch

Why do this?

– (Racket actually has classes and objects even though not
everything is an object)

• Demonstrates how one language's semantics is an idiom in

another language
• Understand dynamic dispatch better by coding it up

– Roughly similar to how an interpreter/compiler would do it

Analogy: In Lecture 9, we encoded higher-order functions using
objects and explicit environments

Fall 2011 13 CSE341: Programming Languages

Our approach

Many ways to achieve our aim. Code in lec21.rkt does this:
– An "object" has a list of field pairs and a list of method pairs

– Field-list element example:
(mcons 'x 17)

– Method-list element example:
(cons 'get-x (lambda (self args) …))

Notes:
• Association lists sufficient but not efficient
• This is not class-based: object has a list of methods, not a class

that has a list of methods [could do it that way instead]
• The key trick is having lambdas take an extra self argument

– All "regular" arguments put in a list args for simplicity
Fall 2011 14 CSE341: Programming Languages

(struct obj (fields methods))

A point object bound to x

Fall 2011 15 CSE341: Programming Languages

fields methods
x

'x
mcar

 -4
mcdr

car

cdr

'y
mcar

 0
mcdr

car
'()
cdr

'get-x
 car

cdr

car

cdr

'set-x

car

cdr

car cdr

'distToOrigin

car

cdr

car
'()
cdr

…

�(self args)… �(self args)… �(self args)…

Key helper functions
Given the object representation on previous slide, define plain-old
Racket functions to get field, set field, send message

Fall 2011 16 CSE341: Programming Languages

(define (assoc-m v xs)
 …) ; assoc for list of mutable pairs

(define (get obj fld)
 (let ([pr (assoc-m fld (obj-fields obj))]))
 (if pr (mcdr pr) (error …))))

(define (set obj fld v)
 (let ([pr (assoc-m fld (obj-fields obj))]))
 (if pr (set-mcdr! pr v) (error …))))

(define (send obj msg . args)
 (let ([pr (assoc msg (obj-methods obj))]))
 (if pr ((cdr pr) obj args) (error …))))

(send x 'distToOrigin)

Fall 2011 17 CSE341: Programming Languages

fields methods
x

'x
mcar

 -4
mcdr

car

cdr

'y
mcar

 0
mcdr

car
'()
cdr

'get-x
 car

cdr

car

cdr

'set-x

car

cdr

car cdr

'distToOrigin

car

cdr

car
'()
cdr

…

�(self args)… �(self args)… �(self args)…

Evaluate body of
�(self args)…
with self bound to
entire object
(and args bound to '())

Constructing points
• Plain-old Racket function can take initial field values and build a

point object (see lec21.rkt)
– Use functions get, set, and send on result and in "methods"
– Call to self: (send self 'm …)
– Real arguments in (car args), (cadr args), etc.

Fall 2011 18 CSE341: Programming Languages

(define (make-point _x _y)
 (obj
 (list (mcons 'x _x)
 (mcons 'y _y))
 (list (cons 'get-x (��(self args)(get self 'x)))
 (cons 'get-y (�(self args)(get self 'y)))
 (cons 'set-x (�(self args)(…)))
 (cons 'set-y (�(self args)(…)))
 (cons 'distToOrigin (�(self args)(…))))))

"Subclassing"

• Can use make-point to write make-color-point or
make-polar-point functions (see code)

• Build a new object using fields and methods from "super"
"constructor"
– Add new or overriding methods to the beginning of the list
– send will find the first matching method
– Since send passes the entire receiver for self, dynamic

dispatch works as desired

Fall 2011 19 CSE341: Programming Languages

Why not ML?
• We were wise to do this exercise in Racket, not ML

• ML's type system doesn't have subtyping for declaring a polar-
point type and a point type and treating one as the other
– Various workarounds possible (e.g., 1 type for all objects)
– Without workarounds, no good type for those self

arguments to functions
• Type depends on "what class" is "using" the method (and

whole purpose is to support dynamic dispatch)

• In fairness, languages with subtyping but not generics make it
analogously awkward to write generic code

• Future lecture will discuss subtyping, contrast it with generics,
and discuss how a language (e.g., Java) can support both

Fall 2011 20 CSE341: Programming Languages

