
CSE341, Fall 2011, Lecture 17 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

This lecture covers three topics that are all directly relevant to the upcoming homework assignment in which
you will use Racket to write an interpreter for a small programming language:

• Racket’s structs for defining new (dynamic) types in Racket and contrasting them with manually tagged
lists [This material was actually covered in the “Monday section” and only briefly reviewed in the other
materials for this lecture.]

• How a programming language can be implemented in another programming language, including key
stages/concepts like parsing, compilation, interpretation, and variants thereof

• How to implement higher-order functions and closures by explicitly managing and storing environments
at run-time

One-of types with lists and dynamic typing

In ML, we studied one-of types (in the form of datatype bindings) almost from the beginning, since they
were essential for defining many kinds of data. Racket’s dynamic typing makes the issue less central since
we can simply use primitives like booleans and cons cells to build anything we want. Building lists and trees
out of dynamically typed pairs is particularly straightforward.

However, the concept of one-of types is still prevalent. For example, a list is null or a cons cell where
there cdr holds a list. Moreover, Racket extends its Scheme predecessor with something very similar to
ML’s constructors — a special form called struct — and it is instructive to contrast the two language’s
approaches.

Before seeing struct, let’s consider Racket without it. There is no type system to restrict what we pass
to a function, put in a pair, etc. However, there are different kinds of values — various kinds of numbers,
procedures, pairs, strings, symbols, booleans, the empty-list — and built-in predicates like number? and
null? to determine what kind of value some particular value is. For values that have “parts” (cons cells),
there are built-in functions for getting the parts (car and cdr). So in a real sense, all Racket values are
in “one big datatype” and primitives like + check the “tags” of their arguments (e.g., is it a number using
number?) and raise an exception for a “run-time type error” before performing some computation (e.g.,
addition) and making a new “tagged” value (e.g., a new number). These “tags” are like ML constructors,
but it is like our whole language has exactly one datatype, everything is in it, all tags are implicit and
automatically inserted, and the primitives implicitly include case expressions that raise exceptions for the
wrong tags.

Given struct-less Racket, we can still “code up” our own datatypes as an idiom. One reasonable approach
is to use lists where the first list element is a symbol1 to indicate which variant of a one-of type you have.
For example, consider this ML datatype:

datatype exp = Const of int | Add of exp * exp | Negate of exp

One way to represent similar values in Racket is to use lists where the first element is ’Const, ’Add, or
’Negate. If it is ’Const, we will have one more list element which is a number. If it is ’Add, we will

1See The Racket Guide for a discussion of what symbols are. In short, they are constants that you can compare using eq?,
which is fast. They are not strings despite the obvious similarity. A symbol is an atom, meaning it has no subparts: you cannot
extract a character of a symbol. There are primitives to convert between symbols and strings, but there are also primitives to
convert between numbers and strings, which are clearly not the same thing.

1

have two more list elements holding subexpressions. Notice Racket’s dynamic typing—specifically lists with
elements of different types—is essential. So we could build an expression like this:

(list ’Negate (list ’Add (list ’Const 2) (list ’Const 2)))

Then functions processing expressions could check the car of the list to see what sort of expression they have
and we could use cond-expressions to “code up” ML-style case expressions without the pattern-matching.

However, it is bad style to assume this sort of data representation all over a large program. Instead, we
should abstract our decisions into helper functions and then use this interface throughout our program.
While the entire notion of an exp datatype is just “in our head” (nowhere does our Racket code define what
an exp is), we still know what we need, namely:

• A way to build each kind of expression (constructors)

• A way to test for the different possibilities (predicates)

• A way to extract the different pieces of each kind of expression

To keep things simple, we won’t have the extractors raise errors for the wrong kind of thing, though we
probably should. Defining all the helper functions is easy:2

(define (Const i) (list ’Const i))
(define (Add e1 e2) (list ’Add e1 e2))
(define (Negate e) (list ’Negate e))

(define (Const? x) (eq? (car x) ’Const))
(define (Add? x) (eq? (car x) ’Add))
(define (Negate? x) (eq? (car x) ’Negate))

(define Const-int cadr)
(define Add-e1 cadr)
(define Add-e2 caddr)
(define Negate-e cadr)

Now we can write expressions in a much better, more abstract style:

(Negate (Add (Const 2) (Const 2)))

Here is an interpreter for our little expression language, using the interface we defined:

(define (eval-exp e)
(cond [(Const? e) e]

[(Add? e) (let ([v1 (Const-int (eval-exp (Add-e1 e)))]
[v2 (Const-int (eval-exp (Add-e2 e)))])

(Const (+ v1 v2)))]
[(Negate? e) (Const (- 0 (Const-int (eval-exp (Negate-e e)))))]
[#t (error "eval-exp expected an exp")]))

2cadr and caddr are built-in functions that are shorter versions of (lambda(x) (car (cdr x))) and (lambda(x) (car (cdr

(cdr x)))) respectively. Similar functions are predefined for any combination of car and cdr up to four uses deep. This support
reflects the historical idiom of using cons cells to code up various datatypes.

2

As discussed more below, our interpreter takes an expression (in this case for arithmetic) and produces a
value (an expression that cannot be evaluated more; in this case a constant).

While this sort of interface is good style in struct-less Racket, it still requires us to remember to use it and
“not cheat.” Nothing prevents a bad programmer from writing (list ’Add #f), which will lead to a strange
error if passed to eval-exp. Conversely, while we think of (Add (Const 2) (Const 2)) as an expression
in our little language, it actually gets evaluated to a list and there is nothing to keep some other part of our
program from taking the result of evaluating (Add (Const 2) (Const 2)) and misusing it.

Better: Racket structs

The struct special form, along with Racket’s module system (see later lecture), fixes the abstraction prob-
lems described above. Using struct is also much more concise than all the helper functions we wrote above.
To use it, just write something like:

(struct card (suit value))

This defines a new “struct” called card that is like an ML constructor. It adds to the environment a
constructor, a predicate, and accessors for the fields. The names of these bindings are formed systematically
from the constructor name card as followed:

• card is a function that takes two arguments and returns a value that is a card with a suit field holding
the first argument and a value field holding the second argument

• card? is a function that takes one argument and returns #t for values created by calling card and #f
for everything else

• card-suit is a function that takes a card and returns the contents of the suit field, raising an error if
passed a non-card

• card-value is similar to card-suit for the value field

There are some useful attributes we can pass to struct definitions to modify their behavior, two of which we
discuss here and will find useful.

First, the #:transparent attribute makes the fields and accessor functions visible even outside the module
that defines the struct. From a modularity perspective this is questionable style, but it has one big advantage
when using DrRacket: It allows the REPL to print struct values with their contents rather than just as an
abstract value. For example, with our earlier definition, the result of (card ’Hearts (+ 3 7)) prints as
#<card> as will any value for which card? returns #t. But with

(struct card (suit value) #:transparent)

the result of (card ’Hearts (+ 3 7)) prints as (card ’Hearts 10). This feature becomes even more
useful for examining values built from recursive uses of structs.

Second, the #:mutable attribute makes all fields mutable by also providing mutator functions like set-card-suit!
and set-card-value!. In short, it is up to you when creating a struct to decide whether the advantages of
having mutable fields outweigh the disadvantages. It is also possible to make some fields mutable and some
fields immutable.

Here is a different definition of an expression language and an interpreter for it that uses struct:

(struct const (int) #:transparent)

3

(struct add (e1 e2) #:transparent)
(struct negate (e) #:transparent)

(define (eval-exp e)
(cond [(const? e) e]

[(add? e) (let ([v1 (const-int (eval-exp (add-e1 e)))]
[v2 (const-int (eval-exp (add-e2 e)))])

(const (+ v1 v2)))]
[(negate? e) (const (- 0 (const-int (eval-exp (negate-e e)))))]
[#t (error "eval-exp expected an exp")]))

An example expression for this language is:

(negate (add (const 2) (const 2)))

The key semantic difference between struct and the more manual approach we took first has to do with
predicates. When we wrote (list ’Const 4) we made something that causes pair? to return #t. With
(const 4), every type predicate in Racket returns #f except for const?. This makes struct quite special:
you cannot define something like it as a function or a macro. For abstraction, getting a brand new kind of
thing is very powerful. However, it means we cannot write “generic” code that crawls all over any kind of
value since no code in our program knows all the structs that may be defined.3

Implementing Programming Languages: Interpreters and Compilers

While this course is mostly about what programming-language features mean and not how they are imple-
mented, implementing a small programming language is still an invaluable experience. First, one way great
way to understand the semantics of some features is to have to implement those features, which forces you
to think through all possible cases. Second, it dispels the idea that things like higher-order functions or
objects are “magic” since implementing them requires only using simpler features we already understand.
Third, many programming tasks are analogous to implementing an interpreter for programming language.
For example, processing a structured document like a pdf file and turning it into a rectangle of pixels for
displaying is aimilar to taking an input program and turning it into an answer.

There are basically two ways to implement a programming language A. First, we could write an interpreter
in another language B that takes programs in A and produces answers. Calling such a program in B an
“evaluator for A” or an “executor for A” probably makes more sense, but “interpreter for A” has been
standard terminology for decades. Second, we could write a compiler in another language B that takes
programs in A and produces an equivalent program in some other language C (not the language C necessarily)
and then use some pre-existing implementation for C. For compilation, we call A the source language and
C the target language. A better term than “compiler” would be “translator” but again the term compiler
is ubiquitous.

While there are certainly many “pure” interpreters and compilers, many modern systems combine aspects of
each and use multiple levels of interpretation and translation. For example, a typical Java system compiles
Java source code into a portable intermediate format. The Java “virtual machine” can then start interpreting
code in this format but get better performance by compiling the code further to code that can execute directly
on hardware. We can think of the hardware itself as an interpreter written in transistors, yet your modern
Intel x86 processor actually has a translator in the hardware that converts the binary instructions into
smaller simpler instructions write before they are executed. There are many variations and enhancements
to even this multi-layered story of running programs, but fundamentally each step is some combination of
interpretation or translation.

3Actually, structs declared with #:transparent allow clients to query what fields they have, but we will not use this
abstraction-breaking feature. We use #:transparent for the convenience of having the printer show the contents of values built
from structs.

4

A one-sentence sermon: Interpreter versus compiler is a feature of a particular programming-language imple-
mentation, not a feature of the programming language. One of the more annoying and widespread misconcep-
tions in computer science is that there are “compiled languages” such as C and “interpreted languages” such
as Racket. This is nonsense: I can write an interpreter for C or a compiler for Racket. (In fact, DrRacket
takes a hybrid approach not unlike Java.) There is a long history of C being implemented with compilers
and functional languages being implemented with interpreters, but compilers for functional languages have
been around for decades. SML N/J for example compiles each module/binding to binary code.

A separate course (CSE401) focuses on techniques for constructing compilers, especially, as one assumes
unless otherwise specified with “compiler,” when the target language is assembly (as you see in CSE351).

Semi-Digression: eval

There is one sense where it is slightly fair to say Racket is an interpreted language: it has a primitive eval
that can take a representation of a program at run-time and evaluate it. For example, this program, which
is poor style because there are much simpler ways to achieve its purpose, may or may not print something
depending on x:

(define (make-some-code y)
(if y

(list ’begin (list ’print "hi") (list ’+ 4 2))
(list ’+ 5 3)))

(define (f x)
(eval (make-some-code x)))

The Racket function make-some-code is strange: It does not ever print or perform an addition. All it does
is return some list containing symbols, strings, and numbers. For example, if called with #t, it returns

’(begin (print "hi") (+ 4 2))

This is nothing more and nothing less than a three element list where the first element is the symbol begin,
which just happens to be a Racket special form. In fact, the nested lists together are a perfectly good
representation of a Racket expression. And the eval primitive takes such a representation and, at run-time,
evaluates it. Many languages have eval, many do not, and what the appropriate idioms for using it are is
a subject of significant dispute. Most would agree it tends to get overused but is also a really powerful tool
that is sometimes what you want.

Can a compiler-based language implementation (notice I didn’t say “compiled language”) deal with eval?
Well, it would need to have the compiler or an interpreter around at run-time since it cannot know in
advance what might get passed to eval. An interpreter-based language implementation would also need an
interpreter or compiler around at run-time, but, of course, it already needs that to evaluate the “regular
program.”

Parsing and Source-Code Analysis (e.g., Type-Checking)

You normally write your program in a text file, which is basically one long string. Strings are not convenient
data structures for the core work of an interpreter or compiler, so the first phase of a language implementation
is usally parsing : converting the string into an abstract syntax tree (AST), which really is just a tree (as you
could build with ML datatypes, Racket structs, or Java classes) describing the program structure. A parse
error is when this process fails, for example due to unmatched parentheses. Parsing is a major topic in the
compilers course; we will not discuss it.

After parsing, we might still perform additional checks to reject a program that “doesn’t make sense.” ML
performs many such checks in the name of type-checking, such as making sure you do not use undefined

5

variables. Racket performs many fewer checks. Of course, even programs that pass all the “compile-time
checks” (this term is standard even if the implementation uses an interpreter; “static checking” is also
common) may still have run-time errors. An entire lecture on whether it is better to have more or less static
checking is coming soon.

Implementing an Interpreter (and Skipping Parsing / Static Checking)

Our eval-exp functions above are perfect examples of interpreters for a small programming language.
The language here is exactly expressions properly built from the constructors for constants, negations, and
addition expressions. The definition of “properly” depends on the language; here we mean constants hold
numbers and negations/additions hold other proper subexpressions. We also need a definition of values for
our little language, which again is part of the language definition. Here we mean constants, i.e., the subset
of expressions built from the const constructor. Then eval-exp is an interpreter because it is a function
that takes expressions in our language and produces values in our language according to the rules for the
semantics to our language. Racket is just the metalanguage, the “other” language in which we write our
interpreter.

What happend to parsing and static checking? In short, we skipped them. By using Racket’s constructors,
we basically wrote our programs directly in terms of abstract syntax trees, relying on having convenient
syntax for writing trees rather than having to make up a syntax and writing a parser. That is, we wrote
programs with expressions like:

(negate (add (const 2) (const 2)))

rather than some sort of string like "- (2 + 2)". We are also assuming that we will not encounter non-
sensical things like (add #t #f).

For this tiny language, there are no run-time errors. Suppose we also had constructors for string constants and
operations like concatenating strings. Then we could view negation applied to a string as a run-time error,
something the interpreter should check for (by checking that the recursive result of evaluating negation’s
subexpression is a constant) and give an appropriate error message.

Environments

The biggest thing missing from our arithmetic-expression language is variables. That is why we could just
have one recursive function that took an expression and returned a value. As we have known since lecture 1,
since expressions can have variables, evaluating them requires an environment that maps variables to values.
So an interpreter for a language with expressions needs a recursive helper function that takes an expression
and an environment and produces a value. (In fact, for languages with features like mutation or exceptions,
the helper function needs even more parameters.) To evaluate a subexpression where more variables are in
scope requires passing a larger environment to the recursive call.

The representation of the environment is part of the interpreter’s implementation in the metalanguage, not
part of the abstract syntax of the language. Many representations will do and some of the fancier data
structures for dictionaries you learn in a data structures course (CSE 332) are appropriate. For our purposes
using Racket as our metalanguage, a simple association list holding pairs of strings (variable names) and
values (what the variables are bound to) can suffice.

Higher-Order Functions and Closures

If our language supports higher-order functions and lexical scope, then our interpreter needs to “remember”
the environment that “was current” when the function was defined so that it can use this environment instead
of the caller’s environment when the function is called. The “trick” to doing this rather is direct: It literally
creates a small data structure called a closure that includes the environment along with the function itself.
It is this pair (the closure) that is the result of interpreting a function. In other words, a function is not a
value, a closure is.

6

At a function call, we evaluate the function part to a value (a closure, else we have an error like trying to
treat a number as a function) and the argument to another value. Next we evaluate the body of the code part
of the closure using the environment part of the closure extended with the argument of the code part
mapping to the argument at the call-site.

That really is how interpreters implement higher-order functions.

It may seem expensive that we store the “whole current environment” in every closure. First, it is not that
expensive when environments are association lists since different environments are just extensions of each
other and we do not copy lists when we make longer lists with cons. (Recall this sharing is a big benefit
of not mutating lists, and we do not mutate environments.) Second, in practice we can save space by only
storing those parts of the environment that the function body might possibly use. We can look at the
function body and see what free variables it has (variables used in the function body whose definition are
outside the function body) and the environment we store in the closure needs only these variables.

Finally, you might wonder how compilers implement closures when the target language does not have higher-
order functions. As part of the translation, function definitions still evaluate to closures that have two parts,
code and environment. However, we do not have an interpreter with a “current environment” whenever we
get to a variable we need to look up. So instead, we change all the functions in the program to take an extra
argument (the environment) and change all function calls to explicitly pass in this extra argument. Now when
we have a closure, the code part will have an extra argument and the caller will pass in the environment
part for this argument. The compiler then just needs to translate all uses of free variables to code that uses
the extra argument to find the right value. In practice, using good data structures for environments (like
arrays) can make these variable lookups very fast (as fast as reading a value from an array).

Using the meta-language for adding “macros”

When implementing an interpreter or compiler, it is essential to keep separate what is in the language being
implemented and what is in the language used for doing the implementation (the metalanguage). For example,
eval-exp is a Racket function that takes an arithmetic-expression-language expression and produces an
arithmetic-expression-language value. So for exmple, an arithmetic-expression-language expression would
never include a use of eval-exp or a Racket addition expression.

But since we are writing our to-be-evaluated programs in Racket, we can use Racket helper functions to help
us create these programs. Doing so is basically defining macros for our language using Racket functions as
the macro language. Here is an example:

(define (triple x) ; produce an arith-exp that when interpreted triples
(add x (add x x)))

Here triple is a Racket function that takes an arithmetic expression and produces an arithmetic ex-
pression. Calling triple produces abstract syntax in our language, much like macro expansion. for
example, (negate (triple (negate (const 4)))) produces (negate (add (negate (const 4)) (add
(negate (const 4)) (negate const 4)))). Notice this “macro” triple does not evaluate the program
in any way: we produce abstract syntax that can then be evaluated, put inside a larger program, etc.

Being able to do this is an advantage of “embeddeing” our little language inside the Racket metalanguage.
The same technique works regardless of the choice of metalanguage.

7

