
CSE341: Programming Languages

Lecture 17
Structs, Implementing Languages,

Implementing Higher-Order Functions

Dan Grossman
Fall 2011

Review

• Given pairs and dynamic typing, you can code up “one-of types”
by using first list-element like a constructor name:

• But much better and more convenient is Racket’s structs
– Makes a new dynamic type (pair? answers false)
– Provides constructor, predicate, accessors

Fall 2011 2 CSE341: Programming Languages

(define (const i) (list 'const i))
(define (add e1 e2) (list 'add e1 e2))
(define (negate e) (list 'negate e))

(struct const (i) #:transparent)
(struct add (e1 e2) #:transparent)
(struct negate (e) #:transparent)

Defines trees

• Either lists or structs (we’ll use structs) can then let us build
trees to represent compound data such as expressions

• Since Racket is dynamically typed, the idea that a set of
constructors are variants for “an expression datatype” is in our
heads / comments
– Skipping: Racket’s contracts have such notions

Fall 2011 3 CSE341: Programming Languages

(add (const 4)
 (negate (add (const 1)
 (negate (const 7)))))

ML’s view of Racket’s “type system”

One way to describe Racket is that it has “one big datatype”
– All values have this same one type

• Constructors are applied implicitly (values are tagged)
– 42 is implicitly “int constructor with 42”

• Primitives implicitly check tags and extract data, raising errors for
wrong constructors
– + is implicitly “check for int constructors and extract data”
– [Actually Racket has a numeric tower that + works on]

• Built-in: numbers, strings, booleans, pairs, symbols, procedures, etc.
– Each struct creates a new constructor, a feature many dynamic

languages do not have
– (struct …) can be neither a function nor a macro

Fall 2011 4 CSE341: Programming Languages

inttag 42

Implementing PLs

Most of the course is learning fundamental concepts for using PLs
– Syntax vs. semantics vs. idioms
– Powerful constructs like pattern-matching, closures,

dynamically typed pairs, macros, …

An educated computer scientist should also know some things
about implementing PLs

– Implementing something requires fully understanding its
semantics

– Things like closures and objects are not “magic”
– Many programming tasks are like implementing PLs

• Example: rendering a document (“program” is the
[structured] document and “pixels” is the output)

Fall 2011 5 CSE341: Programming Languages

Ways to implement a language

Two fundamental ways to implement a PL A

• Write an interpreter in another language B

– Better names: evaluator, executor
– Take a program in A and produce an answer (in A)

• Write a compiler in another language B to a third language C

– Better name: translator
– Translation must preserve meaning (equivalence)

We call B the metalanguage; crucial to keep A and B straight

Very first language needed a hardware implementation

Fall 2011 6 CSE341: Programming Languages

Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options
– But in modern practice have both and multiple layers

A plausible example:

– Java compiler to bytecode intermediate language
– Have an interpreter for bytecode (itself in binary), but

compile frequent functions to binary at run-time
– The chip is itself an interpreter for binary

• Well, except these days the x86 has a translator in
hardware to more primitive micro-operations that it then
executes

Racket uses a similar mix

Fall 2011 7 CSE341: Programming Languages

Sermon

Interpreter versus compiler versus combinations is about a
particular language implementation, not the language definition

So clearly there is no such thing as a “compiled language” or an
“interpreted language”

– Programs cannot “see” how the implementation works

Unfortunately, you hear these phrases all the time

– “C is faster because it’s compiled and LISP is interpreted”
– Nonsense: I can write a C interpreter or a LISP compiler,

regardless of what most implementations happen to do
– Please politely correct your managers, friends, and other

professors �

Fall 2011 8 CSE341: Programming Languages

Okay, they do have one point

In a traditional implementation via compiler, you do not need the
language implementation to run the program

– Only to compile it
– So you can just “ship the binary”

But Racket, Scheme, LISP, Javascript, Ruby, … have eval

– At run-time create some data (in Racket a list, in Javascript a
string) and treat it as a program

– Then run that program
– Since we don’t know ahead of time what data will be created

and therefore what program it will represent, we need a
language implementation at run-time to support eval

• Could be interpreter, compiler, combination

Fall 2011 9 CSE341: Programming Languages

Digression: eval in Racket

Appropriate idioms for eval are a matter of contention
– Often but not always there is a better way
– Programs with eval are harder to analyze

We won’t use eval, but no point in leaving it mysterious

– It works on nested lists of symbols and other values

Fall 2011 10 CSE341: Programming Languages

(define (make-some-code y) ; just returns a list
 (if y
 (list 'begin (list 'print "hi") (list '+ 4 2))
 (list '+ 5 3)))

(eval (make-some-code #t)) ; prints "hi", result 6

Further digression: quoting

• Quoting (quote …) or '(…) is a special form that makes
“everything underneath” atoms and lists, not variables and calls
– But then calling eval on it looks up symbols as code
– So quote and eval are inverses

• There is also quasiquoting
– Everything underneath is atoms and lists except if unquoted
– Languages like Ruby, Python, Perl eval strings and support

putting expressions inside strings, which is quasiquoting

• We won’t use any of this: see The Racket Guide if curious
 Fall 2011 11 CSE341: Programming Languages

(list 'begin
 (list 'print "hi")
 (list '+ 4 2))

(quote (begin
 (print "hi")
 (+ 4 2)))

Back to implementing a language

"(fn x => x + x) 7"

Fall 2011 12 CSE341: Programming Languages

Parsing Call
Function

+
Negate

Constant
4

x

x x
Var Var

Static checking
(what checked
 depends on PL)

Possible
Errors /
warnings

Rest of
implementation

Possible
Errors /
warnings

Skipping those steps

Alternately, we can embed our language inside (data structures) in
the metalanguage

– Skip parsing: Use constructors instead of just strings
– These abstract syntax trees (ASTs) are already ideal

structures for passing to an interpreter

We can also, for simplicity, skip static checking
– Assume subexpressions are actually subexpressions

• Do not worry about (add #f “hi”)
– For dynamic errors in the embedded language, interpreter

can give an error message
• Do worry about (add (fun …) (int 14))

Fall 2011 13 CSE341: Programming Languages

The arith-exp example

This embedding approach is exactly what we did for the PL of
arithmetic expressions:

Note: So simple there are no dynamic type errors in the interpreter

Fall 2011 14 CSE341: Programming Languages

(struct const (i) #:transparent)
(struct add (e1 e2) #:transparent)
(struct negate (e) #:transparent)

(add (const 4)
 (negate (add (const 1)
 (negate (const 7)))))

(define (eval-exp e) …)

The interpreter
An interpreter takes programs in the language and produces values
(answers) in the language

– Typically via recursive helper functions with cases
– This example is so simple we don’t need a helper and can

assume all recursive results are constants

Fall 2011 15 CSE341: Programming Languages

(define (eval-exp e)
 (cond
 [(const? e) e]
 [(add? e)
 (const (+ (const-i (eval-exp (add-e1 e)))
 (const-i (eval-exp (add-e2 e)))))]
 [(negate? e)
 (const (- (const-i (eval-exp (negate-e e)))))]
 [#t (error “eval-exp expected an expression”)]))

“Macros”

Another advantage of the embedding approach is we can use the
metalanguage to define helper functions that create programs in our
language

– They generate the (abstract) syntax
– Result can then be put in a larger program or evaluated
– This is a lot like a macro, using the metalanguage as our

macro system

Example:
 All this does is create a program that has four constant expressions:

Fall 2011 16 CSE341: Programming Languages

(define (triple x) (add x (add x x)))

(define p (add (const 1) (triple (const 2))))

What’s missing

Two very interesting features missing from our arithmetic-
expression language:

– Local variables
– Higher-order functions with lexical scope

How to support local variables:

– Interpreter helper function(s) need to take an environment
– As we have said since lecture 1, the environment maps

variable names to values
• A Racket association list works well enough

– Evaluate a variable expression by looking up the name
– A let-body is evaluated in a larger environment

Fall 2011 17 CSE341: Programming Languages

Higher-order functions

The “magic”: How is the “right environment” around for lexical
scope when functions may return other functions, store them in
data structures, etc.?

Lack of magic: The interpreter uses a closure data structure (with
two parts) to keep the environment it will need to use later

Evaluate a function expression:
– A function is not a value; a closure is a value
– Create a closure out of (a) the function and (b) the current

environment

Evaluate a function call:
– …

Fall 2011 18 CSE341: Programming Languages

Function calls

• Evaluate 1st subexpression to a closure with current environment
• Evaluate 2nd subexpression to a value with current environment
• Evaluate closure’s function’s body in the closure’s environment,

extended to map the function’s argument-name to the argument-
value
– And for recursion, function’s name to the whole closure

This is the same semantics we learned a few weeks ago “coded up”

Given a closure, the code part is only ever evaluated using the
environment part (extended), not the environment at the call-site

Fall 2011 19 CSE341: Programming Languages

Is that expensive?

• Time to build a closure is tiny: a struct with two fields

• Space to store closures might be large if environment is large
– But environments are immutable, so natural and correct to

have lots of sharing, e.g., of list tails (cf. lecture 3)

• Alternative: Homework 5 challenge problem is to, when creating
a closure, store a possibly-smaller environment holding only the
variables that are free variables in the function body
– Free variables: Variables that occur, not counting shadowed

uses of the same variable name
– A function body would never need anything else from the

environment

Fall 2011 20 CSE341: Programming Languages

Free variables examples

(lambda () (+ x y z))

(lambda (x) (+ x y z))

(lambda (x) (if x y z))

(lambda (x) (let ([y 0]) (+ x y z)))

(lambda (x y z) (+ x y z))

(lambda (x) (+ y (let ([y z]) (+ y y))))

Fall 2011 21 CSE341: Programming Languages

Free variables examples

(lambda () (+ x y z)) ; x y z

(lambda (x) (+ x y z)) ; y z

(lambda (x) (if x y z)) ; y z

(lambda (x) (let ([y 0]) (+ x y z))) ; z

(lambda (x y z) (+ x y z)) ; {}

(lambda (x) (+ y (let ([y z]) (+ y y)))) ; y z

Fall 2011 22 CSE341: Programming Languages

Compiling higher-order functions

• Key to the interpreter approach: Interpreter helper function takes
an environment argument
– Recursive calls can use a different environment

• Can also compile higher-order functions by having the
translation produce “regular” functions (like in C or assembly)
that all take an extra explicit argument called “environment”

• And compiler replaces all uses of free variables with code that
looks up the variable using the environment argument
– Can make these fast operations with some tricks

• Running program still creates closures and every function call

passes the closure’s environment to the closure’s code

Fall 2011 23 CSE341: Programming Languages

