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Review 

• Given pairs and dynamic typing, you can code up “one-of types” 
by using first list-element like a constructor name: 
 
 
 
 

• But much better and more convenient is Racket’s structs 
– Makes a new dynamic type (pair? answers false) 
– Provides constructor, predicate, accessors 
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(define (const i)   (list 'const i)) 
(define (add e1 e2) (list 'add e1 e2)) 
(define (negate e)  (list 'negate e)) 

(struct const (i)   #:transparent) 
(struct add (e1 e2) #:transparent) 
(struct negate (e)  #:transparent) 

Defines trees 

• Either lists or structs (we’ll use structs) can then let us build 
trees to represent compound data such as expressions 
 
 
 

 
 

• Since Racket is dynamically typed, the idea that a set of 
constructors are variants for “an expression datatype” is in our 
heads / comments  
– Skipping: Racket’s contracts have such notions 
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(add (const 4) 
     (negate (add (const 1) 
                  (negate (const 7))))) 
 

ML’s view of Racket’s “type system” 

One way to describe Racket is that it has “one big datatype” 
– All values have this same one type 

 

• Constructors are applied implicitly (values are tagged) 
– 42 is implicitly “int constructor with 42” 

 

• Primitives implicitly check tags and extract data, raising errors for 
wrong constructors 
– + is implicitly “check for int constructors and extract data” 
– [Actually Racket has a numeric tower that + works on] 

 

• Built-in: numbers, strings, booleans, pairs, symbols, procedures, etc. 
– Each struct creates a new constructor, a feature many dynamic 

languages do not have 
– (struct …) can be neither a function nor a macro 
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inttag  42 

Implementing PLs 

Most of the course is learning fundamental concepts for using PLs 
– Syntax vs. semantics vs. idioms 
– Powerful constructs like pattern-matching, closures, 

dynamically typed pairs, macros, … 
 

An educated computer scientist should also know some things 
about implementing PLs 

– Implementing something requires fully understanding its 
semantics 

– Things like closures and objects are not “magic” 
– Many programming tasks are like implementing PLs 

• Example: rendering a document (“program” is the 
[structured] document and “pixels” is the output) 
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Ways to implement a language 

Two fundamental ways to implement a PL A 
 
• Write an interpreter in another language B 

– Better names: evaluator, executor 
– Take a program in A and produce an answer (in A) 

 
• Write a compiler in another language B to a third language C 

– Better name: translator 
– Translation must preserve meaning (equivalence) 

 
We call B the metalanguage; crucial to keep A and B straight 
 

Very first language needed a hardware implementation 
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Reality more complicated 

Evaluation (interpreter) and translation (compiler) are your options 
– But in modern practice have both and multiple layers 

 
A plausible example: 

– Java compiler to bytecode intermediate language 
– Have an interpreter for bytecode (itself in binary), but 

compile frequent functions to binary at run-time 
– The chip is itself an interpreter for binary 

• Well, except these days the x86 has a translator in 
hardware to more primitive micro-operations that it then 
executes 

 
Racket uses a similar mix 
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Sermon 

Interpreter versus compiler versus combinations is about a 
particular language implementation, not the language definition 

 
So clearly there is no such thing as a “compiled language” or an 
“interpreted language” 

– Programs cannot “see” how the implementation works 
 
Unfortunately, you hear these phrases all the time 

– “C is faster because it’s compiled and LISP is interpreted” 
– Nonsense: I can write a C interpreter or a LISP compiler, 

regardless of what most implementations happen to do 
– Please politely correct your managers, friends, and other 

professors � 
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Okay, they do have one point 

In a traditional implementation via compiler, you do not need the 
language implementation to run the program 

– Only to compile it 
– So you can just “ship the binary” 

 
But Racket, Scheme, LISP, Javascript, Ruby, … have eval 

– At run-time create some data (in Racket a list, in Javascript a 
string) and treat it as a program 

– Then run that program 
– Since we don’t know ahead of time what data will be created 

and therefore what program it will represent, we need a 
language implementation at run-time to support eval 

• Could be interpreter, compiler, combination 
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Digression: eval in Racket 

Appropriate idioms for eval are a matter of contention 
– Often but not always there is a better way 
– Programs with eval are harder to analyze 

 
We won’t use eval, but no point in leaving it mysterious 

– It works on nested lists of symbols and other values 
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(define (make-some-code y) ; just returns a list 
  (if y 
     (list 'begin (list 'print "hi") (list '+ 4 2)) 
     (list '+ 5 3))) 
 
(eval (make-some-code #t)) ; prints "hi", result 6  

Further digression: quoting 

• Quoting (quote …) or '(…) is a special form that makes 
“everything underneath” atoms and lists, not variables and calls 
– But then calling eval on it looks up symbols as code 
– So quote and eval are inverses 

 
 

 
 

• There is also quasiquoting 
– Everything underneath is atoms and lists except if unquoted 
– Languages like Ruby, Python, Perl eval strings and support  

putting expressions inside strings, which is quasiquoting 
 

• We won’t use any of this: see The Racket Guide if curious 
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(list 'begin  
     (list 'print "hi")  
     (list '+ 4 2)) 
      
 

(quote (begin  
         (print "hi")  
         (+ 4 2))) 
      
 

Back to implementing a language 

"(fn x => x + x) 7" 
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Skipping those steps 

Alternately, we can embed our language inside (data structures) in 
the metalanguage 

– Skip parsing: Use constructors instead of just strings 
– These abstract syntax trees (ASTs) are already ideal 

structures for passing to an interpreter 
 

We can also, for simplicity, skip static checking 
– Assume subexpressions are actually subexpressions 

• Do not worry about (add #f “hi”) 
– For dynamic errors in the embedded language, interpreter 

can give an error message 
• Do worry about (add (fun …) (int 14)) 
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The arith-exp example 

This embedding approach is exactly what we did for the PL of 
arithmetic expressions: 
 
 
 
 
 
 
 
 
 
Note: So simple there are no dynamic type errors in the interpreter  
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(struct const (i)   #:transparent) 
(struct add (e1 e2) #:transparent) 
(struct negate (e)  #:transparent) 

(add (const 4) 
     (negate (add (const 1) 
                  (negate (const 7))))) 
 

(define (eval-exp e) … ) 

The interpreter 
An interpreter takes programs in the language and produces values 
(answers) in the language 

– Typically via recursive helper functions with cases 
– This example is so simple we don’t need a helper and can 

assume all recursive results are constants 
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(define (eval-exp e) 
   (cond  
     [(const? e) e] 
     [(add? e)  
      (const (+ (const-i (eval-exp (add-e1 e))) 
                (const-i (eval-exp (add-e2 e)))))] 
     [(negate? e) 
      (const (- (const-i (eval-exp (negate-e e)))))] 
     [#t (error “eval-exp expected an expression”)])) 

“Macros” 

Another advantage of the embedding approach is we can use the 
metalanguage to define helper functions that create programs in our 
language 

– They generate the (abstract) syntax 
– Result can then be put in a larger program or evaluated 
– This is a lot like a macro, using the metalanguage as our 

macro system 
 

Example:  
  All this does is create a program that has four constant expressions: 
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(define (triple x) (add x (add x x))) 
 
(define p (add (const 1) (triple (const 2)))) 

What’s missing 

Two very interesting features missing from our arithmetic-
expression language: 

– Local variables 
– Higher-order functions with lexical scope 

 
How to support local variables: 

– Interpreter helper function(s) need to take an environment 
– As we have said since lecture 1, the environment maps 

variable names to values 
• A Racket association list works well enough 

– Evaluate a variable expression by looking up the name 
– A let-body is evaluated in a larger environment 
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Higher-order functions 

The “magic”: How is the “right environment” around for lexical 
scope when functions may return other functions, store them in 
data structures, etc.? 
 

Lack of magic: The interpreter uses a closure data structure (with 
two parts) to keep the environment it will need to use later 
 

Evaluate a function expression: 
– A function is not a value; a closure is a value 
– Create a closure out of (a) the function and (b) the current 

environment 
 

Evaluate a function call: 
– … 
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Function calls 

• Evaluate 1st subexpression to a closure with current environment 
• Evaluate 2nd subexpression to a value with current environment 
• Evaluate closure’s function’s body in the closure’s environment, 

extended to map the function’s argument-name to the argument-
value 
– And for recursion, function’s name to the whole closure 

 
This is the same semantics we learned a few weeks ago “coded up” 
 
Given a closure, the code part is only ever evaluated using the 
environment part (extended), not the environment at the call-site 
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Is that expensive? 

• Time to build a closure is tiny: a struct with two fields 
 

• Space to store closures might be large if environment is large 
– But environments are immutable, so natural and correct to 

have lots of sharing, e.g., of list tails (cf. lecture 3) 
 

• Alternative: Homework 5 challenge problem is to, when creating 
a closure, store a possibly-smaller environment holding only the 
variables that are free variables in the function body 
– Free variables: Variables that occur, not counting shadowed 

uses of the same variable name 
– A function body would never need anything else from the 

environment 
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Free variables examples 

(lambda () (+ x y z)) 
 
(lambda (x) (+ x y z)) 
 
(lambda (x) (if x y z)) 
 
(lambda (x) (let ([y 0]) (+ x y z))) 
 
(lambda (x y z) (+ x y z)) 
 
(lambda (x) (+ y (let ([y z]) (+ y y)))) 
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Free variables examples 

(lambda () (+ x y z))   ; x y z 
 
(lambda (x) (+ x y z))  ; y z 
 
(lambda (x) (if x y z)) ; y z 
 
(lambda (x) (let ([y 0]) (+ x y z))) ; z 
 
(lambda (x y z) (+ x y z)) ; {} 
 
(lambda (x) (+ y (let ([y z]) (+ y y)))) ; y z 
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Compiling higher-order functions 

• Key to the interpreter approach: Interpreter helper function takes 
an environment argument 
– Recursive calls can use a different environment 

 

• Can also compile higher-order functions by having the 
translation produce “regular” functions (like in C or assembly) 
that all take an extra explicit argument called “environment” 
 

• And compiler replaces all uses of free variables with code that 
looks up the variable using the environment argument 
– Can make these fast operations with some tricks 

 
• Running program still creates closures and every function call 

passes the closure’s environment to the closure’s code 
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