
CSE341, Fall 2011, Lecture 10 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

This lecture has a few loosely related topics:

• We extend the use of type variables from functions to datatypes.

• We butt heads with the Value Restriction, a necessary wart in SML due to odd interactions between
polymorphic datatypes and mutation. (Mutation is introduced in the materials for the previous lec-
ture.)

• We discuss ML-style type inference to understand what type inference for a statically typed language
is and how ML’s algorithm to infer types is actually fairly straightforward.

Polymorphic Datatypes

Parametric polymorphism becomes particularly useful for defined functions over containers (lists, arrays,
sets, hashtables, etc.) that have elements of the same type. As we have studied, not all functions over lists
are polymorphic, but many are, including the constructors:

val [] : ’a list
val :: : ’a * (’a list) -> ’a list (* infix is syntax *)
val map : (’a -> ’b) * (’a list) -> ’b list
val fold : (’a * ’b -> ’b) -> ’a list -> ’b

What exactly, then is list? It is not a type; you cannot say a function has type list->int, for example. It
is a type-constructor, something that makes a type out of another type. So int list is a type, ’a list is
a type, (int->int) list is a type, etc., and so there exist types like (int->int) list -> int and so on.
Remember for the examples above there is an implicit “for all” on the outside left. For example, the type of
[] is “an alpha list for all types alpha.”

We can define our own type-constructors in ML. It would be a poor language design to have the only
type-constructors be built-in features like lists. In general, if a feature is useful for built-in features, it is
useful for user-defined things too. To define a type-constructor in ML, we just use a datatype binding. We
explicitly give one or more type-constructor arguments that we can then use in the types of the constructors.
Here are two examples:

datatype ’a non_mt_list = One of ’a
| More of ’a * (’a non_mt_list)

datatype (’a,’b) mytree =
Leaf of ’a

| Node of ’b * (’a,’b) mytree * (’a,’b) mytree

The first one is a type for lists that have at least one argument. The second is for trees where leaves
have one type of data and internal nodes have a second type of data (in a particular tree the two types
might or might not be the same). Notice mytree is not a type, something like (int,string) mytree
is a type. Fortunately, type inference can still figure out all the types for us, since Leaf and Node are
just constructors with polymorphic types — Leaf has type ’a -> (’a,’b) mytree and Node has type
’b * (’a,’b) mytree * (’a,’b) mytree -> (’a,’b) mytree. Here are 4 expressions and the inferred
types:
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Node("hi",Leaf 17,Leaf 4) (* (string,int) mytree *)
Node(14,Leaf "hi",Leaf "mom") (* (int,string) mytree *)
Node(14, Leaf 4, Leaf 5) (* (int,int) mytree *)
(* Node("hi",Leaf 17,Leaf true) *) (* doesn’t type-check *)

Now that we can define our own type-constructors, there really was no need for ML to build in support for
lists at all. Yes, the syntax of writing :: infix (between its two arguments or subpatterns) and the syntactic
sugar of [e1,e2,...,en] are nice, but other than that we could just have defined

datatype ’a list = Empty | Cons of ’a * ’a list

and had everything we needed.

The Value Restriction

Unfortunately, this is not quite the end of the story on ML parametric polymorphism. Without one additional
restriction, ML’s mutable references — which are sometimes useful, but we have used only in our callback
example when studying higher-order functions — can make the type system unsound. An unsound type
system does not actually prevent what it claims to prevent, such as treating an int as a function or enforcing
module signatures. This is an example of a program that demonstrates the problem:

val x = ref [] (* ’a list ref *)
val _ = x := ["hi"] (* instantiate ’a with string *)
val _ = (hd(!x)) + 7 (* instantiate ’a with int -- bad!! *)

Straightforward use of the rules for type inference as discussed below would accept this program even
though we should not. To prevent this, ML will reject the first line because of something called “the value
restriction”. The value restriction requires any expression that is given a polymorphic type to be a variable
or a value (including function definitions, constructors, etc.). Because ref [] is not a value, we can give
it type (int list) ref or (string list) ref but not (’a list) ref. But type inference cannot figure
out what non-polymorphic type to give x in our example, so either the programmer must supply an explicit
type or the binding is rejected by the type-checker. While it’s not at all obvious that this simple restriction
makes the whole type system sound, it turns out to be enough.

The value restriction does sometimes get in your way even when you are not using mutation (since the
type-checker does not know you are not using mutation). For example, this completely harmless code is
rejected:

val pr_list = List.map (fn x => (x,x))

As cool as partial application is, if the result would have a polymorphic type, we cannot bind it to a variable
due to the value restriction. We can either give an explicit non-polymorphic type or we can use an extra
function wrapper so that the expression we are using is already a value. (Recall functions are values.) So
any of these three approaches work fine:

val pr_list : int list -> (int*int) list = List.map (fn x => (x,x))
val pr_list = fn lst => List.map (fn x => (x,x)) lst
fun pr_list lst = List.map (fn x => (x,x)) lst

You do not need to know anything about the value restriction really except how to work around it when it
comes up.
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Type Inference

While we have been using ML type inference for a couple weeks, we have not studied it carefully. Let’s first
carefully define what type inference is and then see via several examples how ML type inference works.

Java and ML are statically typed languages, meaning every binding has a type that is determined “at compile-
time” i.e., before any part of the program is run. The type-checker is a compile-time procedure that either
accepts or rejects a program. By contrast, Racket and Ruby are dynamically-typed languages; the type of
a binding is not determined ahead of time and computations like binding 42 to x and then treating x as a
string result in run-time errors. We will spend a later lecture comparing the advantages and disadvantages
of static versus dynamic typing.

Unlike Java, ML is implicitly typed, meaning programmers rarely need to write down the types of bindings.
This is often convenient (though some disagree as to whether it makes code easier or harder to read), but in
no way changes the fact that ML is statically typed. Rather, the type-checker has to be more sophisticated
because it must infer (i.e., figure out) what the type annotations “would have been” had the programmers
written all of them. In principle, type inference and type checking could be separate steps (the inferencer
could do its thing and the checker could see if the result should type-check), but in practice they are often
merged into “the type-checker”. Note that a correct type-inferencer must find a solution to what all the
types should be whenever such a solution exists, else it must reject the program.

Whether type inference for a particular programming language is easy, hard, or impossible (in the halting-
problem sense of CSE311) is often hard to determine. It is not proportional to how permissive the type
system is. For example, the “extreme” type systems that “accept everything” and “accept nothing” are both
very easy to do inference for.

ML was rather cleverly designed so that type inference is a straightforward algorithm. We will demonstrate
that algorithm with a few examples; writing down the whole thing in code is not difficult but we will choose
not to do so. ML type inference ends up intertwined with parametric polymorphism — when the inferencer
determines a function’s argument or result “could be anything” the resulting type uses ’a, ’b, etc. — but
inference and polymorphism are separate concepts: a language could have one or the other. For example,
Java has generics but no inference. We will study parametric polymorphism more carefully in a couple
lectures.

Here is an overview of how ML type inference works (examples to follow):

• It determines the types of bindings in order, using the types of earlier bindings to infer the types of
later ones. This is why you cannot use later bindings in a file. (When you need to, you use mutual
recursion and type inference determines the types of all the mutually recursive bindings together.)

• For each val or fun binding, it analyzes the binding to determine necessary facts about its type. For
example, if we see the expression x+1, we conclude that x must have type int. We gather similar facts
for function calls, pattern-matches, etc.

• Afterward, use type variables (e.g., ’a) for any unconstrained types in function arguments or results.

• (Enforce the value restriction — only variables and values can have polymorphic types, as discussed
above.)

The amazing fact about the ML type system is that “going in order” this way never causes us to unnecessarily
reject a program that could type-check nor do we ever accept a program we should not. So explicit type
annotations really are optional (unless you use features like #1).

As a first example, consider inferring the type for this function:

fun f x =
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let val (y,z) = x in
(abs y) + z

end

Here is how we can infer the type:

• Looking at the first line, f must have type T1->T2 for some types T1 and T2 and in the function body
f has this type and x has type T1.

• Looking at the val-binding, x must be a pair type (else the pattern-match makes no sense), so in fact
T1=T3*T4 for some T3 and T4, and y has type T3 and z has type T4.

• Looking at the addition expression, we know from the context that abs has type int->int, so y has
type T3 means T3=int. Similarly, since abs y has type int, the other argument to + must have type
int, so z having type T4 means T4=int.

• Since the type of the addition expression is int, the type of the let-expression is int. And since the
type of the let-expression is int, the return type of f is int, i.e., T2=int.

Putting all these constraints together, T1=int*int (since T1=T3*T4) and T2=int, so f has type int*int->int.

Note that humans doing type inference “in their head” often take shortcuts just like humans doing long
division in their head, but the point is there is an algorithm that methodically goes through the code
gathering constraints and putting them together to get the answer.

Next example:

fun sum lst =
case lst of
[] => 0

| hd::tl => hd + (sum tl)

• From the first line, there exists types T1 and T2 such that sum has type T1->T2 and lst has type T1.

• Looking at the case-expression, lst must have a type that is compatible with all of the patterns.
Looking at the patterns, both of them match any list, since they are built from list constructors (in
the hd::tl case the subpatterns match anything of any type). So since lst has type T1, in fact
T1=T3 list from some type T3.

• Looking at the right-hand sides of the case branches, we know they must have the same type as each
other and this type is T2. Since 0 has type int, T2=int.

• Looking at the second case branch, we type-check it in a context where hd and tl are available. Since
we are matching the pattern hd::tl against a T3 list, it must be that hd has type T3 and tl has type
T3 list. Now looking at the right-hand side, we add hd, so in fact T3=int. Moreover, the recursive
call type-checks because tl has type T3 list and T3 list=T1 and sum has type T1->T2. Finally,
since T2=int, adding sum tl type-checks. Notice that before we got to sum tl we had already inferred
everything, but we still have to check that types are used consistently and reject otherwise (e.g., if we
had written sum hd, that cannot type-check).

Putting everything together, we get sum has type int list -> int.

Our remaining examples will infer polymorphic types. All we do is follow the same procedure we did above,
but when we are done we will have some parts of the function’s type that are still unconstrained. For each
Ti that “can be anything” we use a type variable (’a, ’b, etc.).
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fun length lst =
case lst of
[] => 0

| hd::tl => 1 + (length tl)

Type inference proceeds much like with sum: We end up determining

• length has type T1->T2

• lst has type T1

• T1=T3 list (due to the pattern-match)

• T2=int because 0 can be the result of a call to length

• hd has type T3 and tl has type T3 list

• The recursive call length tl type-checks because tl has type T3 list, which is T1, the argument
type of length. And we can add the result because T2=int.

So we have all the same constraints as for sum, except we do not have T3=int. In fact, T3 can be anything
and length will type-check. So type inference recognizes that when it is all done, it has length with type
T3 list -> int and T3 can be anything. So we end up with the type ’a -> int, as expected. Again the
rule is simple: for each Ti in the final result that can’t be constrained, we use a type variable.

Final example:

fun compose (f,g) = fn x => f (g x)

• Since the argument to compose must be a pair (from the pattern used for its argument), compose has
type T1*T2->T3, f has type T1 and g has type T2

• Since compose returns a function, T3 is some T4->T5 where in that function’s body, x has type T4

• So g must have type T4->T6 for some T6, i.e., T2=T4->T6

• And f must have type T6->T7 for some T7, i.e., T1=T6->T7

• But the result of f is the result of the function returned by compose, so T7=T5 and so T1=T6->T5

Putting together T1=T6->T5 and T2=T4->T6 and T3=T4->T5 we have a type for compose of
(T6->T5)*(T4->T6) -> (T4->T5). There is nothing else to constrain the types T4, T5, and T6, so we
replace them consistently to end up with (’a->’b)*(’c->’a) -> (’c->’b) as expected (and the last set
of parentheses are optional, but that is just syntax).

For a final example, let’s consider a broken version of sum to see how inference will behave:

fun broken_sum lst =
case lst of
[] => 0

| x::xs => x + (broken_sum x)

• From the first line, there exists types T1 and T2 such that broken_sum has type T1->T2 and lst has
type T1.
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• Looking at the case-expression, lst must have a type that is compatible with all of the patterns.
Looking at the patterns, both of them match any list, since they are built from list constructors (in the
x::xs case the subpatterns match anything of any type). So since lst has type T1, in fact T1=T3 list
from some type T3.

• Looking at the right-hand sides of the case branches, we know they must have the same type as each
other and this type is T2. Since 0 has type int, T2=int.

• Looking at the second case branch, we type-check it in a context where x and xs are available. Since
we are matching the pattern x::xs against a T3 list, it must be that x has type T3 and xs has type
T3 list. Now looking at the right-hand side, we add x, so in fact T3=int.

• Now, we diverge from the correct sum implementation. The recursive call applies broken_sum to x, so x
must have the same type as broken_sum’s parameter, or in other words, T1=T3. However, we know that
T1=T3 list, so this new constraint T1=T3 actually generates a contradiction: T3=T3 list, meaning
that somewhere we’re using x (which has type T3) in two contexts that expect different types. If we
want to be more concrete, we can use our knowledge that T3=int to rewrite this as int=int list.
Looking at the definition of broken_sum it should be obvious that this is exactly the problem: we tried
to use x as an int and as an int list.

When your ML program does not type-check, the type-checker reports the expression where it discovered
a contradiction and what types were involved in that contradiction. While sometimes this information is
helpful, other times the actual problem is with a different expression, but the type-checker did not reach a
contradiction until later.

Now that we have seen how ML type inference works, we can make two interesting observations:

• Inference would be more difficult if ML had subtyping (e.g., if every triple could also be a pair) because
we would not be able to conclude things like, “T3=T1*T2” since the equals would be overly restrictive.

• Inference would be more difficult if ML did not have parametric polymorphism since we would have to
pick some type for functions like length and compose and that could depend on how they are used.
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