
CSE341: Programming Languages
Lecture 10

References, Polymorphic Datatypes,
the Value Restriction, Type Inference

Ben Wood, filling in for Dan Grossman
Fall 2011

Fall 2011 CSE341: Programming Languages

Callbacks

A common idiom: Library takes functions to apply later, when an
event occurs – examples:

– When a key is pressed, mouse moves, data arrives
– When the program enters some state (e.g., turns in a game)

A library may accept multiple callbacks
– Different callbacks may need different private data with

different types
– Fortunately, a function’s type does not include the types of

bindings in its environment
– (In OOP, objects and private fields are used similarly, e.g.,

Java Swing’s event-listeners)

2

Fall 2011 CSE341: Programming Languages

Mutable state

While it’s not absolutely necessary, mutable state is reasonably
appropriate here

– We really do want the “callbacks registered” and “events that
have been delivered” to change due to function calls

For the reasons we have discussed, ML variables really are
immutable, but there are mutable references (use sparingly)

– New types: t ref where t is a type
– New expressions:

• ref e to create a reference with initial contents e
• e1 := e2 to update contents
• !e to retrieve contents (not negation)

3

Fall 2011 CSE341: Programming Languages

References example

4

val x = ref 42
val y = ref 42
val z = x
val _ = x := 43
val w = (!y) + (!z) (* 85 *)
(* x + 1 does not type-check)

• A variable bound to a reference (e.g., x) is still immutable: it will
always refer to the same reference

• But the contents of the reference may change via :=
• And there may be aliases to the reference, which matter a lot
• Reference are first-class values
• Like a one-field mutable object, so := and ! don’t specify the field

Fall 2011 CSE341: Programming Languages

Example call-back library

Library maintains mutable state for “what callbacks are there” and
provides a function for accepting new ones

– A real library would support removing them, etc.
– In example, callbacks have type int->unit (executed for

side-effect)

So the entire public library interface would be the function for
registering new callbacks:

val onKeyEvent : (int -> unit) -> unit

5

Fall 2011 CSE341: Programming Languages

Library implementation

6

val cbs : (int -> unit) list ref = ref []

fun onKeyEvent f = cbs := f :: (!cbs)

fun onEvent i =
 let fun loop fs =
 case fs of
 [] => ()
 | f::fs’ => (f i; loop fs’)
 in loop (!cbs) end

Fall 2011 CSE341: Programming Languages

Clients

Can only register an int -> unit, so if any other data is needed,
must be in closure’s environment

– And if need to “remember” something, need mutable state

Examples:

7

val timesPressed = ref 0
val _ = onKeyEvent (fn _ =>
 timesPressed := (!timesPressed) + 1)

fun printIfPressed i =
 onKeyEvent (fn j =>
 if i=j
 then print ("pressed " ^ Int.toString i)
 else ())

Fall 2011 CSE341: Programming Languages

More about types

• Polymorphic datatypes, type constructors

• Why do we need the Value Restriction?

• Type inference: behind the curtain

8

Fall 2011 CSE341: Programming Languages

Polymorphic Datatypes

9

datatype int_list =
 EmptyList
| Cons of int * int_list

datatype ‘a non_mt_list =
 One of ‘a
| More of ‘a * (‘a non_mt_list)

datatype (‘a,‘b) tree =
 Leaf of ‘a
| Node of ‘b * (‘a,‘b) tree * (‘a,‘b) tree

val t1 = Node(“hi”,Leaf 4,Leaf 8)
(* (int,string) tree *)

val t2 = Node(“hi”,Leaf true,Leaf 8)
(* does not typecheck *)

Fall 2011 CSE341: Programming Languages

Polymorphic Datatypes

• list, tree, etc. are not types; they are type constructors
• int list, (string,real) tree, etc. are types.
• Pattern-matching works on all datatypes.

10

datatype ‘a list = [] | :: of ‘a * (‘a list)
 (* if this were valid syntax *)

datatype ‘a option = NONE | SOME of ‘a

Fall 2011 CSE341: Programming Languages

The Value Restriction Appears 

If you use partial application to create a polymorphic function, it may
not work due to the value restriction

– Warning about “type vars not generalized”
• And won’t let you call the function

– This should surprise you; you did nothing wrong  but you
still must change your code

– See the written lecture summary about how to work around
this wart (and ignore the issue until it arises)

– The wart is there for good reasons, related to mutation and
not breaking the type system

11

Fall 2011 CSE341: Programming Languages

Purpose of the Value Restriction

12

val xs = ref []
(* xs : ‘a list ref *)

val _ = xs := [“hi”]
(* instantiate ‘a with string *)

val y = 1 + (hd (!xs))
(* BAD: instantiate ‘a with int *)

• A binding is only allowed to be polymorphic if the right-hand side is:
– a variable; or
– a value (including function definitions, constructors, etc.)

• ref [] is not a value, so we can only give it non-polymorphic
types such as int list ref or string list ref, but not
‘a list ref.

Fall 2011 CSE341: Programming Languages

Downside of the Value Restriction

13

val pr_list = List.map (fn x => (x,x)) (* X *)

val pr_list : int list -> (int*int) list =
List.map (fn x => (x,x))

val pr_list =
fn lst => List.map (fn x => (x,x)) lst

fun pr_list lst = List.map (fn x => (x,x)) lst

• The SML type checker does not know if the ‘a list type uses
references internally, so it has to be conservative and assume it
could.

• In practice, this means we need to be more explicit about partial
application of polymorphic functions.

Fall 2011 CSE341: Programming Languages

Type inference: sum

14

fun sum xs =
case xs of
 [] => 0
 | x::xs’ => x + (sum xs’)

sum : t1 -> t2
 xs : t1

 t1 = t5 list

 x : t3
xs’ : t4

 t2 = int
 t3 = t5

 t3 = int
 t4 = t5 list

 t1 = t4

Fall 2011 CSE341: Programming Languages

Type inference: sum

15

fun sum xs =
case xs of
 [] => 0
 | x::xs’ => x + (sum xs’)

sum : t1 -> t2
 xs : t1

 t1 = t5 list

 x : t3
xs’ : t4

 t2 = int
 t3 = t5

 t3 = int
 t4 = t5 list

 t1 = t4

t1 t1
int int

intint

Fall 2011 CSE341: Programming Languages

Type inference: sum

16

fun sum xs =
case xs of
 [] => 0
 | x::xs’ => x + (sum xs’)

sum : int list -> int
 xs : int list

 t1 = t5 list

 x : int
xs’ : t4

 t2 = int
 t3 = t5

 t3 = int
 t4 = t5 list

 t1 = t4

int list t1
int

int

Fall 2011 CSE341: Programming Languages

Type inference: length

17

fun length xs =
case xs of
 [] => 0
 | _::xs’ => 1 + (length xs’)

length : t1 -> t2
 xs : t1

 t1 = t4 list

xs’ : t3
 t2 = int
 t3 = t4 list
 t1 = t3

Fall 2011 CSE341: Programming Languages

Type inference: length

18

fun length xs =
case xs of
 [] => 0
 | _::xs’ => 1 + (length xs’)

length : t1 -> t2
 xs : t1

 t1 = t4 list

xs’ : t3
 t2 = int
 t3 = t4 list
 t1 = t3

t1 t1

int

Fall 2011 CSE341: Programming Languages

Type inference: length

19

fun length xs =
case xs of
 [] => 0
 | _::xs’ => 1 + (length xs’)

length : t4 list -> int
 xs : t4 list -> int

 t1 = t4 list

xs’ : t4 list
 t2 = int
 t3 = t4 list
 t1 = t3
 t1

‘a

length works no matter what ‘a is.

Fall 2011 CSE341: Programming Languages

Type inference: compose

20

fun compose (f,g) = fn x => f (g x)

 t3 = t4 -> t5
 t2 = t4 -> t6
 t1 = t6 -> t7
 t5 = t7

x : t4

compose : t1 * t2 -> t3
f : t1
g : t2

Fall 2011 CSE341: Programming Languages

Type inference: compose

21

fun compose (f,g) = fn x => f (g x)

compose : t1 * t2 -> t3
f : t1

 t3 = t4 -> t5g : t2
 t2 = t4 -> t6
 t1 = t6 -> t7
 t5 = t7

x : t4
t5

(t6 -> t5) * t2 -> t3(t6 -> t5) * (t4 -> t6) -> t3
t6 -> t5
t4 -> t6

(t6 -> t5) * (t4 -> t6) -> (t4 -> t5)

t4 -> t5

Fall 2011 CSE341: Programming Languages

Type inference: compose

22

fun compose (f,g) = fn x => f (g x)

compose : (‘a -> ‘b) * (‘c -> ‘a) -> (‘c -> ‘b)

 t3 = t4 -> t5
 t2 = t4 -> t6
 t1 = t6 -> t7
 t5 = t7

t5

compose : (‘b -> ‘c) * (‘a -> ‘b) -> (‘a -> ‘c)

f : t1
g : t2
x : t4

t6 -> t5
t4 -> t6
t4 -> t5

Fall 2011 CSE341: Programming Languages

Type inference: broken sum

23

fun sum xs =
case xs of
 [] => 0
 | x::xs’ => x + (sum x)

sum : t1 -> t2
 xs : t1

 t1 = t5 list

 x : t3
xs’ : t4

 t2 = int
 t3 = t5

 t3 = int
 t4 = t5 list

 t1 = t3

Fall 2011 CSE341: Programming Languages

Type inference: sum

24

fun sum xs =
case xs of
 [] => 0
 | x::xs’ => x + (sum x)

sum : t1 -> t2
 xs : t1

 t1 = t5 list

 x : t1
xs’ : t4

 t2 = int
 t1 = t5

 t1 = int
 t4 = t5 list

 t1 = t3

int
intintint

int int

int

t5 listint

Fall 2011 CSE341: Programming Languages

Parting comments on ML type inference

• You almost never have to write types in ML (even on
parameters), with some minor caveats.

• Hindley-Milner type inference algorithm

• ML has no subtyping. If it did, the equality constraints
we used for inference would be overly restrictive.

• Type variables and inference are not tied to each.
Some languages have one without the other.

– Type variables alone allow convenient code reuse.

– Without type variables, we cannot give a type to
compose until we see it used.

25

