
First topic: Dynamic and Static scoping. Consider the following:

int x = 0;

int f() { return x; }

int g() { int x = 1; return f(); }

Dynamic scoping: g() returns 1. Static scoping: g() returns 0.

(define y 3)
(define (f x) (+ x y))
(let ((x 10)
 (y 20))
 (f 100))

Dynamic scoping: f returns 120. Static scoping: f returns 103.

Static scoping: look at environment of definition

Dynamic scoping: look at environment of execution

Review of coerce: if 5+a is called, and 5 doesn’t know how to add an argument of type a, 5 does the
following call:
a.coerce(self) #equivalent here to a.coerce(5)

So, in the a object, need a coerce method, which returns a new pair of things to try adding to get the
result. The first return works because a+a already works. The second return works because a+5 already
works.

def coerce(other)

 return [Section.new(other), self]

 #could also use return [self, other]

 end

-Review: eval and bindings. Consider the following class:

class Foo

 def initialize

 @field = 43

 end

 def create_block

 Proc.new {}

 end

end

proc = Foo.new.create_block

#proc has with it the environment where the proc

#was created, which is the environment inside

#the Foo class at the point of creation

puts eval("self.class", proc.binding)

#result is Foo. “self”, in the provided

#environment, refers to the Foo class

puts eval("@field", proc.binding)

#result is 43. “@field” in the provided

environment is the field of Foo at the moment

the proc was created.

-Grab bag of Ruby stuff

multiple arguments to a method:

def foo(a, b, *args)

args.each {..}

end

parallel assignment: i,j = j,i #(swap with no temp)

Multiple return values:

a,b = foo

def foo

return 5,6

end

