
Aspects of Operational Semantics of Pure

Functional Languages

Evaluation of an expression in a functional lan-

guage can be described as a rewriting of the

expression into a canonical form, with the func-

tion definitions as the rewrite rules.

Rewrite a function application by replacing the

function application by the body of the func-

tion, substituting the actual arguments for for-

mals, and renaming variables if needed.

Example. Given the definition

double x = x + x, evaluate double 4.

double 4 ==>

4+4 ==>

8

1



Evaluation Order

Two important orders of rewriting:

• Normal order - rewrite the leftmost oc-

curence of a function application. (This

is equivalent to call by name.)

• Applicative order - rewrite the innermost

occurrence of a function application first.

(This is equivalent to call by value.)

Normal order evaluation always gives the same

results as lazy evaluation, but may end up eval-

uating an expression more times.

2



Evaluation Order Examples

Consider

double x = x + x

average x y = (x + y) / 2

To avoid confusion about infix notation, let’s

re-express this as:

double x = plus x x

average x y = divide (plus x y) 2

Evaluate:

double (average 2 4)

3



Example – Normal Order Evaluation

double (average 2 4) =>

plus (average 2 4) (average 2 4) =>

plus (divide (plus 2 4) 2) (average 2 4) =>

plus (divide 6 2) (average 2 4) =>

plus 3 (average 2 4) =>

plus 3 (divide (plus 2 4) 2) =>

plus 3 (divide 6 2) =>

plus 3 3 =>

6

Notice that (average 2 4) was evaluated twice
. . . lazy evaluation would cache the results of
the first evaluation.

4



Example – Applicative Order Evaluation

double (average 2 4) =>

double (divide (plus 2 4) 2) =>

double (divide 6 2) =>

double 3 =>

plus 3 3 =>

6

5



Different Semantics for Normal and Ap-

plicative Order Evaluation

Now consider:

my_if True x y = x

my_if False x y = y

Evaluate:

my_if (less 3 4) (plus 5 5) (divide 1 0)

Normal order evaluation:

my_if (less 3 4) (plus 5 5) (divide 1 0) =>

my_if True (plus 5 5) (divide 1 0) =>

(plus 5 5) =>

10

6



Different Semantics for Normal and Ap-

plicative Order Evaluation (2)

Applicative order evaluation:

my_if (less 3 4) (plus 5 5) (divide 1 0) =>

my_if True (plus 5 5) (divide 1 0) =>

my_if True 10 (divide 1 0) =>

DIVIDE BY ZERO ERROR

7



Properties of Evaluation Order; Strictness

• If there is any evaluation order that will ter-
minate and that will not generate an error,
normal order evaluation will terminate and
will not generate an error.

• Any evaluation order that terminates with-
out error will give the same result as
any other evaluation order that terminates
without error.

Definition: a function f is strict in an argument
if that argument is always evaluated whenever
an application of f is evaluated.

If a function is strict in an argument, we can
safely evaluate the argument first if we need
the value of applying the function.

This can be useful in optimizing compilers for
lazy functional languages.

8


