
CSE 341 Section Handout #6
Cheat Sheet

Types
numbers: integers (3, 802), reals (3.4), rationals (3/4), complex (2+3.4i)
symbols: x, y, hello, r2d2
booleans: #t, #f
strings: "hello", "how are you?"
lists: (list 3 4 5) (list 98.5 "hello" (list 3 82.9) 73)

Constructs
function call: (f arg1 arg2 arg3 ... argN)
variable binding: (define sym expr)
function binding: (define (f p1 p2 ... pN) expr)
function binding (define (f p1 p2 ... pN)
with helpers: (define ...)
 (define ...) expr)
let binding: (let ((sym1 e1) (sym2 e2) ... (symN eN)) expr)
let* binding: (let* ((sym1 e1) (sym2 e2) ... (symN eN)) expr)
if expression: (if test e1 e2)
cond expression: (cond (test1 e1)
 (test2 e2) ...
 (testN eN))
 (cond (test1 e1)
 (test2 e2) ...
 (else eN))

Useful procedures
arithmetic: +, -, *, /, modulo, quotient, remainder
mathematical: abs, sin, cos, max, min, expt, sqrt, floor, ceiling, truncate, round
relational: =, <, >, <=, >=
equality: eq?, eqv?, equal?
logical: and, or, not
type predicates: number? integer? real? symbol? boolean? string? list?
higher-order: map, filter, foldl, foldr, sort, andmap, ormap

List procedures
length length of a list
car first element of a list
cdr rest of the list
cons takes a value and a list and joins them; ML's ::
append joins >= 2 lists together; ML's @
list forms a list from a sequence of values
member whether a value is in a list
remove removes one occurrence of a value from a list
null? is something an empty list?
pair? is something a nonempty list?

CSE 341 Section Handout #6
Questions

1. For each of the following definitions of a factorial function, identify the parenthesis error:

a. (define (fact n) (if (= n 0) (1) (* n (fact (- n 1)))))

b. (define (fact n) (if = n 0 1 (* n (fact (- n 1)))))

c. (define fact (n) (if (= n 0) 1 (* n (fact (- n 1)))))

d. (define (fact n) (if (= n 0) 1 (* n fact (- n 1))))

e. (define (fact n) (if (= n 0) 1 (* n ((fact) (- n 1)))))

2. Use the R5RS Scheme standard documentation web site to figure out the following:

a. How do you form a comment in Scheme?
b. Is there a syntax for multi-line comments?
c. How is the expression (/ a b c d) evaluated (i.e., left-to-right or right-to-left)?
d. How would you compare to see if one string is less than another?
e. How can you sort a list of integers?

3. Define a function called days-in-month that takes an integer representing a month as an argument and
that returns the number of days in that month. You may assume that the month value passed is between
1 and 12 inclusive. You may also assume that the month is not part of a leap year. The following table
shows the number of days in each month:

Month 1 Jan 2 Feb 3 Mar 4 Apr 5 May 6 Jun 7 Jul 8 Aug 9 Sep 10 Oct 11 Nov 12 Dec
Days 31 28 31 30 31 30 31 31 30 31 30 31

For example, the call of (days-in-month 5) would return 31.

4. Define a function called pow that takes two integers as arguments and that returns the result of raising
the first integer to the power of the second (i.e., (pow x y) should return xy). You may assume that the
power is not negative. For our purposes, we will assume that every integer to the 0 power is 1 (this isn't
true of 0 to the 0, but that's okay). For example, (pow 2 10) should return 1024.

5. Define a function called sum-to that accepts an integer n and that computes the sum of the first n
reciprocals. That is:

∑
i=1

n
1
i

For example, (sum-to 3) should return (1 + 1/2 + 1/3) = 1 5/6 . The function should return 0 if n is 0.
You may assume that the function is not passed a negative value of n. Notice that unlike ML, Scheme
can compute these values exactly as rational numbers rather than using the real type.

CSE 341 Section Handout #6
Problems (continued)

6. Define a procedure named sum that accepts a list of numbers as a parameter and returns the sum of all
the numbers in the list. For example, the call of (sum (list 1 2 -3 4 5)) should return 9.
(What happens if you put some real numbers in the list? Fractions? Etc.)

7. Define a procedure named stutter that takes a list as an argument and that returns the list obtained by
replacing every value in the list with two of that value. For example, the call of (stutter '(1 2 3))
should return (1 1 2 2 3 3).

8. Define a procedure named multiples that accepts two integer parameters n and k that returns a list of
the first n multiples of k. For example, the call of (multiples 3 5) should return (5 10 15).

9.

a. Write a procedure named positive-sum that that takes a list as an argument and that returns the
sum of the positive numbers in the list. works on lists of integers only; for example, the call of
(positive-sum '(1 -5 2 3 -6 4 7)) should return 17. Use your code from the previous sum
problem as a basis to get you started.

b. Modify your function so that it can handle lists where some of the elements are non-numbers
(skip them). The list might contain inner lists; skip them entirely. (In other words, don't worry
about any numbers that might appear inside of any inner lists). For example, the call of
 (positive-sum '(1 a b 3.4 -5 "hello" (2 -1 3) -8)) should return 4.4.

10. Define a procedure named flatten that takes a list as an argument and that returns the list obtained by
eliminating internal list structures. For example, the call of:
(flatten '(1 2 a (b c (d e (f)) g) () () 13)) should return (1 2 a b c d e f g 13) .

CSE 341 Section Handout #6
Solutions

1.

Recall that the correct definition is:

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1)))))

The errors are as follows:

a. (define (fact n) (if (= n 0) (1) (* n (fact (- n 1)))))
 (1) is not a function

b. (define (fact n) (if = n 0 1 (* n (fact (- n 1)))))
 the if has 5 arguments

c. (define fact (n) (if (= n 0) 1 (* n (fact (- n 1)))))
 bad define with 3 arguments instead of 2

d. (define (fact n) (if (= n 0) 1 (* n fact (- n 1))))
 the call on * includes fact as if it were a number

e. (define (fact n) (if (= n 0) 1 (* n ((fact) (- n 1)))))
 (fact) is a bad call

2. This information can be found in the R5RS standard:

a. For the question about comments, go to the index and look up "comment" to find that anything
after a semi-colon is considered a comment.

b. Scheme has only single-line comments.

c. In evaluating, (/ a b c d), the standard says "associating to the left", which means it is
evaluated as, (((a / b) / c) / d).

d. Looking through the index for things that begin with "string", you'll find a function string<?
which you can call by saying, (string<? "hello" "there").

e. You can sort a list of integers with an expression such as, (sort '(1 5 2 7 4 8 3) <).

3.

(define (days-in-month m)
 (cond ((or (= m 9) (= m 4) (= m 6) (= m 11)) 30)
 ((= m 2) 28)
 (else 31)))

4.

(define (pow x y)
 (if (= 0 y) 1
 (* x (pow x (- y 1)))))

5.

(define (sum-to n)
 (if (= 1 n) 1
 (+ (/ 1 n) (sum-to (- n 1)))))

CSE 341 Section Handout #6
Solutions

6.

(define (sum lst)
 (if (null? lst) 0
 (+ (car lst) (sum (cdr lst)))))

7.

(define (stutter lst)
 (if (null? lst)
 ()
 (cons (car lst) (cons (car lst) (stutter (cdr lst))))))

8.

(define (multiples n m)
 (define (explore i)
 (if (> i n)
 ()
 (cons (* i m) (explore (+ i 1)))))
 (explore 1))

9.

; a)
(define (positive-sum lst)
 (cond ((null? lst) 0)
 ((>= (car lst) 0) (+ (car lst) (positive-sum (cdr lst)))))
 (else (positive-sum (cdr lst))))

; b) (ignoring non-numbers)
(define (positive-sum lst)
 (cond ((null? lst) 0)
 ((and (number? (car lst)) (>= (car lst) 0))
 (+ (car lst) (positive-sum (cdr lst))))
 (else (positive-sum (cdr lst)))))

10.

(define (flatten lst)
 (cond ((null? lst) ())
 ((list? (car lst))
 (append (flatten (car lst)) (flatten (cdr lst))))
 (else (cons (car lst) (flatten (cdr lst))))))

	CSE 341 Section Handout #6
	Cheat Sheet
	Types
	Constructs
	Useful procedures
	List procedures

	Questions
	Problems (continued)
	Solutions
	Solutions

