
CSE 341 Section Handout #6
Cheat Sheet

Types
numbers:           integers (3, 802), reals (3.4), rationals (3/4), complex (2+3.4i)
symbols:           x, y, hello, r2d2
booleans:          #t, #f
strings:           "hello", "how are you?"
lists:             (list 3 4 5) (list 98.5 "hello" (list 3 82.9) 73)

Constructs
function call:     (f arg1 arg2 arg3 ... argN)
variable binding:  (define sym expr)
function binding:  (define (f p1 p2 ... pN) expr)
function binding   (define (f p1 p2 ... pN)
with helpers:          (define ...)
                       (define ...) expr)
let binding:       (let ((sym1 e1) (sym2 e2) ... (symN eN)) expr)
let* binding:      (let* ((sym1 e1) (sym2 e2) ... (symN eN)) expr)
if expression:     (if test e1 e2)
cond expression:   (cond (test1 e1)
                         (test2 e2) ...
                         (testN eN))
                   (cond (test1 e1)
                         (test2 e2) ...
                         (else eN))

Useful procedures
arithmetic:        +, -, *, /, modulo, quotient, remainder
mathematical:      abs, sin, cos, max, min, expt, sqrt, floor, ceiling, truncate, round
relational:        =, <, >, <=, >=
equality:          eq?, eqv?, equal?
logical:           and, or, not
type predicates:   number? integer? real? symbol? boolean? string? list?
higher-order:      map, filter, foldl, foldr, sort, andmap, ormap

List procedures
length             length of a list
car                first element of a list
cdr                rest of the list
cons               takes a value and a list and joins them;  ML's ::
append             joins >= 2 lists together;  ML's @
list               forms a list from a sequence of values
member             whether a value is in a list
remove             removes one occurrence of a value from a list
null?              is something an empty list?
pair?              is something a nonempty list?



CSE 341 Section Handout #6
Questions

1. For each of the following definitions of a factorial function, identify the parenthesis error:

a. (define (fact n) (if (= n 0) (1) (* n (fact (- n 1)))))

b. (define (fact n) (if = n 0 1 (* n (fact (- n 1)))))

c. (define fact (n) (if (= n 0) 1 (* n (fact (- n 1)))))

d. (define (fact n) (if (= n 0) 1 (* n fact (- n 1))))

e. (define (fact n) (if (= n 0) 1 (* n ((fact) (- n 1)))))

2. Use the R5RS Scheme standard documentation web site to figure out the following:

a. How do you form a comment in Scheme?
b. Is there a syntax for multi-line comments?
c. How is the expression (/ a b c d) evaluated (i.e., left-to-right or right-to-left)?
d. How would you compare to see if one string is less than another?
e. How can you sort a list of integers?

3. Define a function called days-in-month that takes an integer representing a month as an argument and 
that returns the number of days in that month.  You may assume that the month value passed is between 
1 and 12 inclusive.  You may also assume that the month is not part of a leap year.  The following table  
shows the number of days in each month:

Month 1 Jan 2 Feb 3 Mar 4 Apr 5 May 6 Jun 7 Jul 8 Aug 9 Sep 10 Oct 11 Nov 12 Dec
Days 31 28 31 30 31 30 31 31 30 31 30 31

For example, the call of (days-in-month 5) would return 31.

4. Define a function called pow that takes two integers as arguments and that returns the result of raising 
the first integer to the power of the second (i.e., (pow x y) should return xy).  You may assume that the 
power is not negative.  For our purposes, we will assume that every integer to the 0 power is 1 (this isn't  
true of 0 to the 0, but that's okay).  For example, (pow 2 10) should return 1024.

5. Define a  function called  sum-to that accepts an integer  n and that computes the sum of the first  n 
reciprocals.  That is:

∑
i=1

n
1
i

For example, (sum-to 3) should return (1 + 1/2 + 1/3) = 1 5/6 .  The function should return 0 if n is 0. 
You may assume that the function is not passed a negative value of n.  Notice that unlike ML, Scheme 
can compute these values exactly as rational numbers rather than using the real type.
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Problems (continued)

6. Define a procedure named sum that accepts a list of numbers as a parameter and returns the sum of all 
the  numbers  in  the  list.   For  example,  the  call  of  (sum (list 1 2 -3 4 5)) should  return  9.
(What happens if you put some real numbers in the list?  Fractions?  Etc.)

7. Define a procedure named stutter that takes a list as an argument and that returns the list obtained by 
replacing every value in the list with two of that value.    For example, the call of (stutter '(1 2 3)) 
should return (1 1 2 2 3 3).

8. Define a procedure named multiples that accepts two integer parameters n and k that returns a list of 
the first n multiples of k.  For example, the call of (multiples 3 5) should return (5 10 15).

9.

a. Write a procedure named positive-sum that that takes a list as an argument and that returns the 
sum of the positive numbers in the list.   works on lists of integers only; for example, the call of 
(positive-sum '(1 -5 2 3 -6 4 7)) should return 17.  Use your code from the previous sum 
problem as a basis to get you started.

b. Modify your function so that it can handle lists where some of the elements are non-numbers 
(skip them).  The list might contain inner lists; skip them entirely.  (In other words, don't worry 
about  any  numbers  that  might  appear  inside  of  any  inner  lists).   For  example,  the  call  of
 (positive-sum '(1 a b 3.4 -5 "hello" (2 -1 3) -8)) should return 4.4.

10. Define a procedure named flatten that takes a list as an argument and that returns the list obtained by 
eliminating internal list structures.  For example, the call of:
(flatten '(1 2 a (b c (d e (f)) g) () () 13)) should return (1 2 a b c d e f g 13) .
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Solutions

1.

Recall that the correct definition is:

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1)))))

The errors are as follows:

a.  (define (fact n) (if (= n 0) (1) (* n (fact (- n 1)))))
    (1) is not a function

b.  (define (fact n) (if = n 0 1 (* n (fact (- n 1)))))
    the if has 5 arguments

c.  (define fact (n) (if (= n 0) 1 (* n (fact (- n 1)))))
    bad define with 3 arguments instead of 2

d.  (define (fact n) (if (= n 0) 1 (* n fact (- n 1))))
    the call on * includes fact as if it were a number

e.  (define (fact n) (if (= n 0) 1 (* n ((fact) (- n 1)))))
    (fact) is a bad call

2. This information can be found in the R5RS standard:

a. For the question about comments, go to the index and look up "comment" to find that anything 
after a semi-colon is considered a comment.

b. Scheme has only single-line comments.

c. In evaluating,  (/ a b c d),  the standard says "associating  to  the left",  which means it  is 
evaluated as, (((a / b) / c) / d).

d. Looking through the index for things that begin with "string", you'll find a function  string<? 
which you can call by saying, (string<? "hello" "there").

e. You can sort a list of integers with an expression such as, (sort '(1 5 2 7 4 8 3) <).

3.

(define (days-in-month m)
    (cond ((or (= m 9) (= m 4) (= m 6) (= m 11)) 30)
          ((= m 2) 28)
          (else 31)))

4.

(define (pow x y)
    (if (= 0 y) 1
        (* x (pow x (- y 1)))))

5.

(define (sum-to n)
    (if (= 1 n) 1
        (+ (/ 1 n) (sum-to (- n 1)))))
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Solutions

6.

(define (sum lst)
    (if (null? lst) 0
        (+ (car lst) (sum (cdr lst)))))

7.

(define (stutter lst)
    (if (null? lst)
        ()
        (cons (car lst) (cons (car lst) (stutter (cdr lst))))))

8.

(define (multiples n m)
    (define (explore i)
        (if (> i n)
            ()
            (cons (* i m) (explore (+ i 1)))))
        (explore 1))

9.

; a)
(define (positive-sum lst)
    (cond ((null? lst) 0)
          ((>= (car lst) 0) (+ (car lst) (positive-sum (cdr lst)))))
          (else (positive-sum (cdr lst))))

; b) (ignoring non-numbers)
(define (positive-sum lst)
    (cond ((null? lst) 0)
        ((and (number? (car lst)) (>= (car lst) 0))
              (+ (car lst) (positive-sum (cdr lst))))
        (else (positive-sum (cdr lst)))))

10.

(define (flatten lst)
    (cond ((null? lst) ())            
        ((list? (car lst))
         (append (flatten (car lst)) (flatten (cdr lst))))
        (else (cons (car lst) (flatten (cdr lst))))))
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