
CSE 341 Section Handout #2
Cheat Sheet

Patterns
fun name(pattern1) = expression1
| name(pattern2) = expression2
...
| name(patternN) = expressionN;

Examples:

(* Computes n!, or 1 * 2 * 3 * ... * n-1 * n.
 Precondition: n >= 0. *)
fun factorial(0) = 1
| factorial(n) = n * factorial(n - 1);

(* Computes the sum of the elements of a list of integers. *)
fun sum([]) = 0
| sum(first :: rest) = first + sum(rest);

let expressions (1)
(* for a 'local variable' *)
let
 val name = expression
in
 expression
end;

Example:

(* Computes x^100. A somewhat silly function. *)
fun hundredthPower(x: real) =
 let
 val fourth = x * x * x * x
 val twentieth = fourth * fourth * fourth * fourth * fourth
 in
 twentieth * twentieth * twentieth * twentieth * twentieth
 end;

let expressions (2)
(* for a 'helper function' *)
let
 fun name = expression
in
 expression
end;

Example:

(* Computes the least common multiple (LCM) of x and y. *)
fun lcm(x, y) =
 let
 fun gcd(x, 0) = x
 | gcd(x, y) = gcd(y, x mod y)
 in
 x * y div gcd(x, y)
 end;

CSE 341 Section Handout #2
Questions

(When solving these problems, use pattern matching rather than using if-then-else statements or calling
functions like length, hd, and tl. Also use let declarations as necessary to help you solve the problems.

1. Write a function twoSame that produces true if a list of values has two consecutive values that are equal.
For example, the call of twoSame([5, ~3, 19, 19, 2, 24, 7]) would produce true.

2. Write a function called stutter that takes a list as an argument and that produces the list formed by
replacing each value in the list with two of that value. For example, the call of stutter([1, 2, 3])
should produce [1,1,2,2,3,3].

3. Write a function called stutterString that produces the result of replacing each character of a string with
two of that character. For example, the call of stutterString("hello") should produce "hheelloo".

4. Write a function isPrime that takes an integer n and that produces true if n is a prime number and false if
it is not. For example, the call of isPrime(1031) should produce true. By definition, a number is prime
if it is divisible only by itself and 1. Your function should produce false for all numbers less than 2.

5. Consider the following inefficient attempt to compute the maximum value in a list:

fun bad_max([x]) = x
| bad_max(x::xs) =
 (print(".");
 if x > bad_max(xs) then x
 else bad_max(xs));

fun max([x]) = x
| max(x::xs) =
 let val m = max(xs)
 in (print("."); if x > m then x else m)
 end;

What is the complexity of this function? Rewrite it to be O(n).

6. Write a function called cycle that takes an integer n and a list and that produces the list obtained by moving
the first n values to the end of the list. For example, cycle(4, [1, 2, 3, 4, 5, 6]) should produce
[5,6,1,2,3,4]. You may assume that n is less than or equal to the length of the list. (HINT: Cycle a
single value to the end of the list n different times.)

7. Write a variation of the function described in problem 5 called cycle2 that computes its result efficiently.
In particular, it should only perform a single list append. You may call the built-in function rev which is an
efficient implementation of the reverse operation.

CSE 341 Section Handout #2
Solutions

1.
fun twoSame([]) = false
| twoSame([x]) = false
| twoSame(x::y::rest) = (x = y) orelse twoSame(y::rest);

2.
fun stutter([]) = []
| stutter(x::xs) = x::x::stutter(xs);

3.
fun stutterString(str) = implode(stutter(explode(str)));

4.
fun isPrime(2) = true
| isPrime(n) =
 let
 fun explore(m) =
 if m >= n then true
 else n mod m <> 0 andalso explore(m + 2)
 in
 n > 2 andalso n mod 2 <> 0 andalso explore(3)
 end;

5. The bad_max function will be O(n) for a list that is in reverse sorted order, but it will be O(2n) for a list in
sorted order. The method becomes linear when you introduce a let:
fun max([x]) = x
| max(x::xs) =
 let
 val m = max(xs)
 in
 if x > m then x else m
 end;

6.
fun cycle(0, lst) = lst
| cycle(n, x::xs) = cycle(n - 1, xs @ [x]);

7.
fun cycle2(n, lst) =
 let
 fun loop(0, list, back) = list @ rev(back)
 | loop(n, x::xs, back) = loop(n - 1, xs, x::back)
 in
 loop(n, lst, [])
 end;

	CSE 341 Section Handout #2
	Cheat Sheet
	Patterns
	let expressions (1)
	let expressions (2)

	Questions
	Solutions

