
CSE 341

Lecture 29 b

Course wrap-up

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

One view of languages

dynamically typed

statically typed

object-orientedfunctional

JavaScriptSchemedynamically typed

JavaMLstatically typed

object-orientedfunctional

3

A broader view

Not all languages are functional or OO!

• logic languages (e.g., Prolog)

• scripting languages (Perl, Python, Lua)

• query languages (SQL)

• purely functional languages (Haskell; no ref or set!)

• visual languages, spreadsheet languages, GUI-builders,

text-formatters, hardware-synthesis, ...

• languages with heavy support for parallel programming

4

Why did we do this?

• the time needed to "pick up" a new language will drop

dramatically (though you have to learn its libraries, too)

• use mutation for what it's good for; not to create brittle

programs with unseen dependencies

• syntax matters, but it's not everything

• apply idioms in languages besides where you saw them

• recognize that language-design is hard; semantics should

not be treated lightly; more syntax is not always better

5

Big ideas

• code runs in environments; scope/resolution matters

• recursive data is processed with recursive functions

• without mutation, copying vs. aliasing is indistinguishable

• closures have many powerful uses

• (dis-) advantages of static typing (and what is checked)

• when evaluation occurs is important (thunks/macros)

• OO vs. FP: many similarities and a couple big differences

• parametric polymorphism vs. subtyping

• can embed a language in another via interpreters/macros

6

Big picture questions

• Which language we learned is your favorite? Why?

� Least favorite?

• What are the pros and cons of static/dynamic typing?

• What are some benefits of coding in a functional style?

• How does a functional language handle extensibility and

reusable code, as opposed to how OO languages do it?

7

What next?

• learn more about the languages we covered

� be careful/honest when listing them on your resume...!

• learn a language similar to / inspired by ones we saw

� Scala: functional/OO mixture that runs on Java VM

� F#: Microsoft's ML clone; can interact with C# code

� C#: Microsoft's Java clone

� Clojure: Scheme/Lisp dialect that runs on Java VM

� Scala/Ruby/Lua: dynamic and high-level, like JavaScript

• take CSE 401 (Compilers)

� learn much more about how compilers/interpreters work

