
CSE 341

Lecture 29 a

JavaScript, the bad parts

slides created by Marty Stepp

http://www.cs.washington.edu/341/

see also:

JavaScript: The Good Parts, by Douglas Crockford

2

Bad parts related to variables

• global variables and implied globals

x = 7; // oops, now i have a global x

• lack of block scope
if (x < 10) {

var y = x + 3;

print(y);

}

// oops, y still exists here

• the global object and confusing uses of this

this.x++; // now it's 8. wait, what?

3

Bad parts: numbers

• parseInt is broken for some numbers:

� parseInt("032") assumes it's octal, returns 26 (3*8+2)

� parseInt("08") returns 0; 8 isn't a valid octal digit

� solution: can pass a base

– parseInt("032", 10) returns 32

• real number round-off

0.1 + 0.2 // 0.30000000000000004

� many languages have this issue, but:

– many novice programmers use JS, and this confuses them

– for such a high-level lang., it is surprising to be stuck with it

4

Bad part: NaN

• NaN is a common numeric result with odd properties:

3 * "x", 1 + null, undefined - undefined, ...

� hard to test for NaN:

3 * "x" === NaN is false (nothing is equal to NaN)

NaN === NaN is false !

� must use isNaN or isFinite function instead:

isNaN(3 * "x") === true

• NaN and undefined are mutable; can be changed!

undefined = 42; // uh oh

NaN = 1.0; // Lulz

5

Bad parts: falsy values

• testing for the wrong falsy value can have bad results:

function transferMoney(account) {

// passes with 0, "", undefined, false, ...

if (account.name == null) { ... }

• == is strange and produces odd results for falsy values:

"" == false // true

0 == false // true

"0" == false // true

"" == '0' // false

"" == 0 // true

null == undefined // true

" \t \n " == 0 // true

6

Bad part: semicolon insertion

• JS has a complex algorithm that allows you to omit

semicolons and it will automatically insert them

� nice for bad programmers who forget to use them

� but often has weird and confusing results:

// return an object // the code turns into...

return return;

{ {

name: "Joe", name: "Joe",

age: 15 age: 15

} }

7

Bad part: with

• the with statement runs code in context of an object:

var o = {name: "Bob", money: 2.50};

with (o) {

// now I don't have to say o.name

if (name.length > 2) { money++; }

}

� confusing when there's also a var named name or money

8

Bad part: eval

• the eval function compiles/executes a string as code:

var s = "1 + 2 * 3";

eval(s) // 7

var f = "function(s) { " +

"print(s.toUppercase()); }";

eval("f('hi');"); // HI

� seems nice, but it's slow, buggy, and bad for security

– why is Scheme's eval better than this one?

9

Bad part: typeof

• typeof operator is broken for several types:

� for undefined: returns "undefined" (this is fine)

� for null: returns "object", not "null"

� for arrays: returns "object", not "array"

� for RegExps: returns "object" or "function"

• void is a JS operator that turns anything to undefined

� void("hello") returns "undefined"

– useless, confusing to Java programmers

10

Bad part: Primitive wrappers

• numbers, booleans, strings are actually primitives in JS

� but if they are used in an object-like way, they are silently

temporarily converted into wrapper objects (~ like Java)

– (3).toString() ← creates temp object

� you can explicitly construct wrappers, but don't ever do it:

var b = new Boolean(false);

var n = new Number(42);

var s = new String("hello");

typeof(b) // "object"

if (b) { print("hi"); } // does print!

n === 42 // false

11

For-each loop on objects

for (name in object) { statements; }

• "for-each" loops over each property's name in the object

� it also loops over the object's methods!

> for (prop in teacher) {

print(prop + "=" + teacher[prop]); }

fullName=Marty Stepp

age=31

height=6.1

class=CSE 341

greet=function greet(you) {

print("Hello " + you + ", I'm " + this.fullName);

}

12

Bad part: Never-empty objects

var wordCount(text) {
var counts = {}; // object 'map' of counters
var words = text.split(/\s+/);
for (var i = 0; i < words.length; i++) {

if (counts[words[i]]) {
counts[words[i]]++;

} else {
counts[words[i]] = 1;

}
}
return counts;

}

� What if the text contains this, or constructor, or ...?

13

Moral of the story

• Language design is hard and not to be taken lightly!

� every language has a few misguided or abusable features

� it's hard to change a language once it has been released

� sometimes adding features over time bloats a language

� add things coders need; don't add things coders don't need

� having more than 10 days to design a language is good

� having more than one person design a language is good

� mostly-copying another language can be very confusing

