
CSE 341

Lecture 28

Regular expressions

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Influences on JavaScript

• Java: basic syntax, many type/method names

• Scheme: first-class functions, closures, dynamism

• Self: prototypal inheritance

• Perl: regular expressions

• Historic note: Perl was a horribly flawed and very useful

scripting language, based on Unix shell scripting and C,

that helped lead to many other better languages.

� PHP, Python, Ruby, Lua, ...

� Perl was excellent for string/file/text processing because it

built regular expressions directly into the language as a

first-class data type. JavaScript wisely stole this idea.

3

What is a regular expression?

/[a-zA-Z_\-]+@(([a-zA-Z_\-])+\.)+[a-zA-Z]{2,4}/

• regular expression ("regex"): describes a pattern of text

� can test whether a string matches the expr's pattern

� can use a regex to search/replace characters in a string

� very powerful, but tough to read

• regular expressions occur in many places:

� text editors (TextPad) allow regexes in search/replace

� languages: JavaScript; Java Scanner, String split

� Unix/Linux/Mac shell commands (grep, sed, find, etc.)

4

String regexp methods

breaks apart a string into an
array of strings using the given
regular as the delimiter; returns
the array of tokens

.split(delimiter[,limit])

returns first index where the
given regular expression occurs

.search(regexp)

replaces first occurrence of the
regular expression with the given
text; if global /g flag is used,
replaces all occurrences

.replace(regexp, text)

returns first match for this string
against the given regular
expression; if global /g flag is
used, returns array of all matches

.match(regexp)

5

Basic regexes

/abc/

• a regular expression literal in JS is written /pattern/

• the simplest regexes simply match a given substring

• the above regex matches any line containing "abc"

� YES : "abc", "abcdef", "defabc", ".=.abc.=."

� NO : "fedcba", "ab c", "AbC", "Bash", ...

6

Wildcards and anchors

. (a dot) matches any character except \n

� /.oo.y/ matches "Doocy", "goofy", "LooPy", ...

� use \. to literally match a dot . character

^ matches the beginning of a line; $ the end

� /^if$/ matches lines that consist entirely of if

\< demands that pattern is the beginning of a word;

\> demands that pattern is the end of a word

� /\<for\>/ matches lines that contain the word "for"

7

String match

string.match(regex)

• if string fits pattern, returns matching text; else null

� can be used as a Boolean truthy/falsey test:

if (name.match(/[a-z]+/)) { ... }

• g after regex for array of global matches

� "obama".match(/.a/g) returns ["ba", "ma"]

• i after regex for case-insensitive match

� name.match(/Marty/i) matches "marty", "MaRtY"

8

String replace

string.replace(regex, "text")

• replaces first occurrence of pattern with the given text

� var state = "Mississippi";
state.replace(/s/, "x") returns "Mixsissippi"

• g after regex to replace all occurrences

� state.replace(/s/g, "x") returns "Mixxixxippi"

• returns the modified string as its result; must be stored

� state = state.replace(/s/g, "x");

9

Special characters

| means OR

� /abc|def|g/ matches lines with "abc", "def", or "g"

� precedence: ^Subject|Date: vs. ^(Subject|Date):

� There's no AND & symbol. Why not?

() are for grouping

� /(Homer|Marge) Simpson/ matches lines containing

"Homer Simpson" or "Marge Simpson"

\ starts an escape sequence

� many characters must be escaped: / \ $. [] () ^ * + ?

� "\.\\n" matches lines containing ".\n"

10

Quantifiers: * + ?

* means 0 or more occurrences

� /abc*/ matches "ab", "abc", "abcc", "abccc", ...

� /a(bc)/" matches "a", "abc", "abcbc", "abcbcbc", ...

� /a.*a/ matches "aa", "aba", "a8qa", "a!?_a", ...

+ means 1 or more occurrences

� /a(bc)+/ matches "abc", "abcbc", "abcbcbc", ...

� /Goo+gle/ matches "Google", "Gooogle", "Goooogle",
...

? means 0 or 1 occurrences

� /Martina?/ matches lines with "Martin" or "Martina"

� /Dan(iel)?/ matches lines with "Dan" or "Daniel"

11

More quantifiers

{min,max} means between min and max occurrences

� /a(bc){2,4}/ matches lines that contain

"abcbc", "abcbcbc", or "abcbcbcbc"

• min or max may be omitted to specify any number

� {2,} 2 or more

� {,6} up to 6

� {3} exactly 3

12

Character sets

[] group characters into a character set;

will match any single character from the set

� /[bcd]art/ matches lines with "bart", "cart", and "dart"

� equivalent to /(b|c|d)art/ but shorter

• inside [], most modifier keys act as normal characters

� /what[.!*?]*/ matches "what", "what.", "what!",

"what?**!", ...

– Exercise : Match letter grades e.g. A+, B-, D.

13

Character ranges

• inside a character set, specify a range of chars with -

� /[a-z]/ matches any lowercase letter

� /[a-zA-Z0-9]/ matches any letter or digit

• an initial ^ inside a character set negates it

� /[^abcd]/ matches any character but a, b, c, or d

• inside a character set, - must be escaped to be matched

� /[\-+]?[0-9]+/ matches optional - or +, followed by at

least one digit

– Exercise : Match phone numbers, e.g. 206-685-2181 .

14

Built-in character ranges

• \b word boundary (e.g. spaces between words)

• \B non-word boundary

• \d any digit; equivalent to [0-9]

• \D any non-digit; equivalent to [^0-9]

• \s any whitespace character; [\f\n\r\t\v...]

• \s any non-whitespace character

• \w any word character; [A-Za-z0-9_]

• \W any non-word character

• \xhh, \uhhhh the given hex/Unicode character

� /\w+\s+\w+/ matches two space-separated words

15

Regex flags

/pattern/g global; match/replace all occurrences

/pattern/i case-insensitive

/pattern/m multi-line mode

/pattern/y "sticky" search, starts from a given index

• flags can be combined:

/abc/gi matches all occurrences of abc, AbC, aBc, ABC, ...

16

Back-references

• text "captured" in () is given an internal number;

use \number to refer to it elsewhere in the pattern

� \0 is the overall pattern,

� \1 is the first parenthetical capture, \2 the second, ...

� Example: "A" surrounded by same character: /(.)A\1/

� variations

– (?:text) match text but don't capture

– a(?=b) capture pattern b but only if preceded by a

– a(?!b) capture pattern b but only if not preceded by a

17

Replacing with back-references

• you can use back-references when replacing text:

� refer to captures as $number in the replacement string

� Example: to swap a last name with a first name:

var name = "Durden, Tyler";

name = name.replace(/(\w+),\s+(\w+)/, "$2 $1");

// "Tyler Durden"

– Exercise : Reformat phone numbers from 206-685-2181

format to (206) 685.2181 format.

18

The RegExp object

new RegExp(string)
new RegExp(string, flags)

• constructs a regex dynamically based on a given string

var r = /ab+c/gi; is equivalent to

var r = new RegExp("ab+c", "gi");

� useful when you don't know regex's pattern until runtime

– Example: Prompt user for his/her name, then search for it.

– Example: The empty regex (think about it).

19

Working with RegExp

• in a regex literal, forward slashes must be \ escaped:

/http[s]?:\/\/\w+\.com/

• in a new RegExp object, the pattern is a string, so the

usual escapes are necessary (quotes, backslashes, etc.):

new RegExp("http[s]?://\\w+\\.com")

• a RegExp object has various properties/methods:

� properties: global, ignoreCase, lastIndex,

multiline, source, sticky; methods: exec, test

20

Regexes in editors and tools

• Many editors allow regexes in their Find/Replace feature

• many command-line Linux/Mac tools support regexes

grep -e "[pP]hone.*206[0-9]{7}" contacts.txt

