
CSE 341

Lecture 26

OOP, prototypes, and inheritance

slides created by Marty Stepp

http://www.cs.washington.edu/341/



2

How to get a "class"?

• What if we want to create a class, not just one object?

� JavaScript, unlike Java, does NOT have classes

� we could emulate a constructor with a function:

// Creates and returns a new Point object.
function constructPoint(xValue, yValue) { // bad code

return {
x: xValue,  y: yValue,
distanceFromOrigin: function() {

return Math.sqrt(this.x * this.x +
this.y * this.y;

}
};

}

> var p = constructPoint(4, -3);



3

Problems with pseudo-constructor

function constructPoint(xValue, yValue) { // bad code
return {

x: xValue,  y: yValue,
distanceFromOrigin: function() {

return Math.sqrt(this.x * this.x +
this.y * this.y;

}
};

}

� ugly

� doesn't match the "new" syntax we're used to

� wasteful;  stores a separate copy of the 

distanceFromOrigin method in each Point object



4

Functions as constructors

// Constructs and returns a new Point object.

function Point(xValue, yValue) {
this.x = xValue;

this.y = yValue;

this.distanceFromOrigin = function() {

return Math.sqrt(this.x * this.x + this.y * this.y);
};

}

> var p = new Point(4, -3);

� a constructor is just a normal function!

� called with new like in Java



5

Functions as constructors

• in JavaScript, any function can be used as a constructor!

� by convention, constructors' names begin in uppercase

� when a function is called w/ new, it implicitly returns this

function Point(x, y) {

this.x = x;

this.y = y;

}

� all global "classes" (Number, String, etc.) are functions 

acting as constructors, that contain useful properties



6

Functions as constructors

• any function can be called as a constructor or a function

• when any function called with new, JavaScript:

� creates a new empty anonymous object

� uses the new empty object as this within the call

� implicitly returns the new object at the end of the call

• if you call a "constructor" without new, this refers to 

the global object instead

� what happens if our "constructor" is called this way?

> var p = Point(4, -3);



7

Prototypes

• prototype: an ancestor of a JavaScript object

� like a "super-object" instead of a superclass

� a parent at the object level rather than at the class level



8

Prototypes

• every object contains a reference to its prototype

� default: Object.prototype;  strings → String.prototype;  etc.

• a prototype can have a prototype, and so on

� an object "inherits" all methods/data from its prototype(s)

� doesn't have to make a copy of them; saves memory

� prototypes allow JavaScript to mimic classes, inheritance



9

Functions and prototypes

// also causes Point.prototype to be defined

function Point(xValue, yValue) {

...

}

• every function stores a prototype object property in it

� example: when we define our Point function (constructor), 

that creates a Point.prototype

� initially this object has nothing in it  ( {} )

� every object you construct will use the function's 

prototype object as its prototype

– e.g. every new Point object uses Point.prototype



10

How constructors work

• when any function called with new, JavaScript:

� creates a new empty anonymous object

� uses the new empty object as this within the call

� attaches the function's .prototype property to the new 

object as its internal prototype

� implicitly returns the new object at the end of the call



11

The prototype chain

var p1 = new Point(4, -3);

• when you ask for a property (or method) in an object, JS: 

� sees if the object itself contains that property

� if not, recursively checks the object's prototype for it

� if not found, continues up the "prototype chain" until it 

finds the property or gives up with undefined



12

Augmenting a type via prototypes

// adding a method to the prototype

function.prototype.name = function(params) {

statements;

};

Point.prototype.distanceFromOrigin = function() {

return Math.sqrt(this.x * this.x +

this.y * this.y);

};

• adding a property to a prototype will give it to all objects 

that use that prototype

� better than manually adding each method to each object



13

What goes in a prototype?

• generally only methods and constants (variables)

� not objects' fields!

� can also add "static" methods meant to be called on the 

prototype itself, e.g. Math.abs

• What would happen if we put the x and y fields in 

Point.prototype?

• Exercise: Add distance and toString methods.



14

Exercise solutions

// Distance between this point and the given point.

Point.prototype.distance = function(p) {

var dx = this.x - p.x;

var dy = this.y - p.y;

return Math.sqrt(dx * dx + dy * dy);

};

// A string version of this object, e.g. "(3, -4)".

Point.prototype.toString = function() {

return "(" + this.x + ", " + this.y + ")";

};



15

Modifying built-in prototypes

// add a 'contains' method to all String objects

String.prototype.contains = function(text) {

return this.indexOf(text) >= 0;

};

• ANY prototype can be modified, including existing types

� many JS add-on libraries do this to augment the language

� not quite the same as adding something to a single object

• Exercise: Add a reverse method to all strings.

• Exercise: Add a shuffle method to all arrays.



16

Pseudo class-based-inheritance

function SuperClassName(parameters) { ... }

function SubClassName(parameters)   { ... }

SubClassName.prototype =           // connect them

new SuperClassName(parameters);

� to make a "subclass", tell its constructor to use an object of 

a "superclass" as its prototype

� why not just write it this way?

SubClassName.prototype = SuperClassName.prototype;



17

Pseudo-inheritance example

// Constructor for Point3D "subclass"
function Point3D(x, y, z) {

this.x = x;
this.y = y;
this.z = z;

}

// set it to be a "subclass" of Point
Point3D.prototype = new Point(0, 0);

// override distanceFromOrigin method to be 3D
Point3D.prototype.distanceFromOrigin = function() {

return Math.sqrt(this.x * this.x +
this.y * this.y + this.z * this.z);

};



18

Problems with pseudo-inheritance

• there no equivalent of the super keyword

� no easy way to call the superclass's constructor

• no built-in way to call an overridden superclass method

� have to write it manually, e.g.

var d = Point.prototype.

distanceFromOrigin.apply(this);

• solution: many JS libraries add class creation syntax, e.g.

Class.create(name, superclass, ...)



19

The instanceof keyword

expr instanceof ConstructorFunction

• returns true if the given object was constructed by the 

given constructor, or is in the object's prototype chain

> var p = new Point(3, -4);
> var p3d = new Point3D(3, -4, 5);
> p instanceof Point
true
> p3d instanceof Point3D
true
> p3d instanceof Point
true
> "hello" instanceof Point || {} instanceof Point
false



20

Another type test: .constructor

> var p1 = new Point(3, -4);
> p1.constructor
function Point(xValue, yValue) { ... }

> var o = {};
> o.constructor
function Object() {[native code for Object.Object]}

• every object has a constructor property that refers to 

the function used to construct it (with new)

� if the object was created without a constructor using {}, 

its .constructor property refers to the Object() function

� constructor can be changed; instanceof will still work



21

The base2 library

load("base2.js");  // http://code.google.com/p/base2/

var Animal = Base.extend({
constructor: function(name) {

this.name = name;
},

name: "",

eat: function() {
this.say("Yum!");

},

say: function(message) {
print(this.name + ": " + message);

}
});

� intended to make inheritance/subtyping easier

� all classes extend a common constructor called Base



22

Java within JavaScript

• the Rhino VM is written in Java

� it implements a layer of JavaScript on top of Java

• Rhino lets you use Java classes in JavaScript

� combine Java's rich class library with 

JavaScript's dynamism and simpler syntax

• current trend: languages that on top of the JVM

� Clojure: a Lisp dialect

� Scala: an ML-like functional language

� Groovy: a scripting language

� JVM adaptations: JRuby, Jython, Erjang, JScheme, ...



23

Using Java classes in Rhino

importPackage(Packages.package);

importClass(Packages.package);

var name = new JavaClassName(params);

• Example:

> importPackage(Packages.java.util);

> var s = new TreeSet();

> s.addAll(Arrays.asList([2,7,1,2,4,1,2,4]));

> s

[1.0, 2.0, 4.0, 7.0]



24

Accessing class properties

JavaClassName.property

JavaClassName["property"]

• Example:

> var console = new Scanner(System.in);
js: "<stdin>", line 44: missing name after . operator

js: var console = new Scanner(System.in);

js: ...................................^

> var console = new Scanner(System["in"]);



25

Some Java ↔ JS quirks

• JS Numbers are sometimes doubles when used in Java
> Arrays.asList([1, 2, 3])
[1.0, 2.0, 3.0]       <-- ArrayList<Double>

• to force usage of int, use Integer objects
> var list = new ArrayList();
> list.add(1);
> list.add(new Integer(2));
> list
[1.0, 2]

• char, long, short, byte are treated as Numbers in JS
> var s = new java.lang.String("hello");
> s.charAt(0)
104



26

More Java ↔ JS quirks

• sometimes JS → Java can't tell what type to use:
> var a = [4, 1, 7, 2];
> Arrays.sort(a);
The choice of Java constructor sort matching 
JavaScript argument types (object) is ambiguous; 
candidate constructors are: 

void sort(java.lang.Object[])
void sort(long[])
void sort(int[])
...

• Java collections/arrays DO have bounds checking
> var list = new ArrayList();
> list.get(7);
java.lang.IndexOutOfBoundsException: Index:7, Size:0



27

Implementing and extending

new InterfaceOrSubclass(object)   // or,

new JavaAdapter(Packages.superclass,

interface1, ..., interfaceN, object)

• Example:

> var o = { compare: function(s1, s2) {
return s1.length() - s2.length(); }};

> var comp = new Comparator(o);
> var set = new TreeSet(comp);
> set.add("goodbye");
> set.add("what");
> set.add("bye");
> set.add("hello");
> set
[bye, what, hello, goodbye]



28

Other direction: JS within Java

• Java 1.6 adds javax.script package to run JS code:

import java.io.*;

import javax.script.*;

public class RunJS {

public static void main(String[] args) throws Throwable {

ScriptEngine engine = new ScriptEngineManager().

getEngineByName("javascript");

for (String arg : args) {

engine.eval(new FileReader(arg));

}

}

}


