
CSE 341

Lecture 24

JavaScript arrays and objects

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Arrays

var name = []; // empty
var name = [expr, ..., expr]; // pre-filled

name[index] // access value
name[index] = expr; // store value

var stooges = ["Larry", "Moe", "Shemp"];
stooges[2] = "Curly";

• the array is the only data structure included in JavaScript

(other than objects)

3

Array features

• JS arrays can store elements of multiple types:

> var a = [42, true, "abc"];

• arrays can be converted into strings (or call toString):

> print("hi " + a + " bye");
hi 42,true,abc bye

• caution: the typeof an array is object, not array:

> typeof(a)
object

4

Array length

• use the length property to find the # of elements:

> a.length
3

• you can set length;

� if smaller, truncates the array to the new smaller size

� if larger, all new elements will be undefined

> a.length = 2;
> a
42,true

5

Non-contiguous arrays

• there is no such thing as an array out-of-bounds error

� get an element out of bounds → undefined

� set an element out of bounds → length increases to fit

– any elements in between old/new lengths are undefined

> var a = [42, 10];
> a[10] = 5;
> a
42,10,,,,,,,,,5

> typeof(a[6])
undefined

> a.length
11

6

Array instance methods

index of first/last occurrence of expr; -1 if not found.indexOf(expr)
.lastIndexOf(expr)

glues elements together into a string.join(separator)

insert value(s) at front of array.unshift(expr...)

converts array to string such as "42,5,-1,7".toString()

Removes count elements from array starting at index,
and inserts any given new elements there

.splice(index,
count, expr...)

sorts array in place, with optional compare function
that takes 2 values, returns <0, 0, >0 (compareTo)

.sort()

.sort(compareFn)

returns sub-array from start (incl.) to end (exclusive).slice(start, end)

remove and return first element.shift()

returns new array w/ elements in opposite order.reverse()

append value(s) to end of array.push(expr...)

remove and return last element.pop()

returns new array with appended elements/arrays.concat(expr...)

7

Array methods example

var a = ["Stef", "Jay"]; // Stef, Jay
a.push("Bob"); // Stef, Jay, Bob
a.unshift("Kelly"); // Kelly, Stef, Jay, Bob
a.pop(); // Kelly, Stef, Jay
a.shift(); // Stef, Jay
a.sort(); // Jay, Stef

• array serves as many data structures: list, queue, stack, ...

• methods: concat, join, pop, push, reverse, shift,

slice, sort, splice, toString, unshift

� push and pop add / remove from back

� unshift and shift add / remove from front

– shift and pop return the element that is removed

8

Split and join

var s = "quick brown fox";
var a = s.split(" "); // ["quick", "brown", "fox"]
a.reverse(); // ["fox", "brown", "quick"]
s = a.join("!"); // "fox!brown!quick"

• split breaks a string into an array using a delimiter

� can also be used with regular expressions (seen later)

• join merges an array into a single string, placing a

delimiter between them

9

"Multi-dimensional" arrays

• JS doesn't have true multi-dimensional arrays, but you

can create an array of arrays:

> var matrix = [[10, 15, 20, 25],
[30, 35, 40, 45],
[50, 55, 60, 65]];

> matrix[2][1]
55

> matrix.length
3

> matrix[1].length
4

10

(broken) for-each loop

for (name in expr) { statements; }

• JavaScript has a "for-each" loop, but it loops over each

index, not each value, in the array.

� in some impl.s, it also loops over the array's methods!

� considered broken; discouraged from use in most cases

> var ducks = ["Huey", "Dewey", "Louie"];
> for (x in a) { print(x); }
0

1

2

11

Array exercises

• Write a function sum that adds the values in an array.

• Write a function longestWord that takes a string and

returns the word within that string with the most

characters. If the string has no words, return "".

• Write a function rotateRight that accepts an array and

an integer n and "rotates" it by sliding each element to

the right by 1 index, n times.

� rotateRight([1, 2, 3, 4, 5], 2); changes the

array to store [4, 5, 1, 2, 3]

12

Simulating other data structures

• JS has no other collections, but an array can be used as...

� a stack: push, pop, length

� a queue: push, shift, length

� a list: push/pop/unshift/shift,slice/splice,indexOf...

13

Array higher-order methods *

* most web browsers are missing some/all of these methods

accepts a function that accepts pairs of values and

combines them into a single value; calls it on each

element starting from the front, using the given

initialValue (or element [0] if not passed)

reduceRight starts from the end of the array

.reduce(function)

.reduce(function,
initialValue)

.reduceRight(function)

.reduceRight(function,

initialValue)

accepts a function that returns a boolean; calls it

on each element, returning a new array of the

elements for which the function returned true

.filter(function)

applies function to each element; returns new array.map(function)

accepts a function that returns a boolean value

and applies it to each element until it returns true

.some(function)

applies a "void" function to each element.forEach(function)

accepts a function that returns a boolean value

and calls it on each element until it returns false

.every(function)

14

Objects

• simple types: numbers, strings, booleans, null, undefined

� object-like; have properties; but are immutable

� all other values in JavaScript are objects

• JavaScript objects are mutable key/value collections

� a container of properties, each with a name and value

• JavaScript does not have the concept of classes (!!)

� every object is "just an object"

� (it is possible to relate one object to others; seen later)

15

Creating an object

{ name: expr,
name: expr, ...,
name: expr }

� can enclose name in quotes if it conflicts with a keyword

> var teacher = { fullName: "Marty Stepp",
age: 31, height: 6.1, "class": "CSE 341" };

> var emptyObj = {};

• an object variable stores a reference to the object:
> var refToTeacher = teacher; // not a copy

16

Accessing object properties

object.propertyName
object["propertyName"]
object[expr]

� use latter syntax if you don't know prop. name till runtime

> teacher.age
31

> teacher["fullName"]
Marty Stepp

> var x = "height";
> teacher[x]
6.1

17

Modifying/removing properties

object.propertyName = expr;

object["propertyName"] = expr;
delete object.propertyName;
delete object["propertyName"];

� delete removes a property from the object

> teacher.age = 29; // if only...
> teacher["height"] -= 0.2;
> delete teacher.age; // no one will know!
> typeof(teacher.age)
undefined

18

More about properties

• property names can be anything but undefined:

> var silly = {42: "hi", true: 3.14, "q": "Q"};

• you can add properties to an object after creating it:

> silly.favoriteMovie = "Fight Club";

> silly["anotherProp"] = 123;

• if you access a non-existent property, it is undefined:
> silly.fooBar
> typeof(silly.fooBar)
undefined

19

Null/undefined objects

• trying to read properties of null/undefined is an error:

> var n = null;
> var u; // undefined
> n.foo // error
> u.foo // error

• You can guard against such errors with && and ||:

> teacher && teacher.name
Marty Stepp

> n && n.foo
null

> (n && n.foo) || 42 // 42 if n is falsey
42

20

Object methods

• an object can contain methods (functions) as properties

� method can use the this keyword to refer to the object

function greet(you) {
print("Hello " + you + ", I'm " + this.fullName);

}

> teacher.greet = greet;
> teacher.greet("students");
Hello students, I'm Marty Stepp

21

For-each loop on objects

for (name in object) { statements; }

• "for-each" loops over each property's name in the object

� it also loops over the objects's methods!

� usually not useful; discouraged. also order unpredictable

> for (prop in teacher) {
print(prop + "=" + teacher[prop]); }

fullName=Marty Stepp

age=31

height=6.1

class=CSE 341

greet=function greet(you) {

print("Hello " + you + ", I'm " + this.fullName);

}

22

Objects as maps

• JS has no map collection, but an object can be used as one:

� the "keys" are the object's properties (property names)

> var phonebook = {};
> phonebook["Marty"] = "685-2181";
> phonebook["Stuart"] = "685-9138";
> phonebook["Jenny"] = "867-5309";
> phonebook["Stuart"]
685-9138

"Marty"

"Jenny"

"Stuart" "685-2181"

"685-9138"

"867-5309"

keys (properties) values

23

Arrays are (just) objects

• an array is (essentially) just an object with properties

named 0, 1, 2, ..., and a length property

� arrays also contain methods like pop and slice

• it's hard to tell whether a given value even IS an array

� typeof({name: "Bob", age: 22}) → "object"

� typeof([1, 2, 3]) → "object"

24

Duck typing

• duck typing: Dynamic typing where an object's set of

properties, rather than its class, determines its semantics.

� "If it walks like a duck, and quacks like a duck, ..."

• JS code will "work" as long as a value is not used in a way

that causes an error.

• Any JS parameter can be of any type, so a function that

expects an array can be "tricked" by passing any object

that "walks and quacks" like an array...

25

Duck typing in action

function sum(a) { // add up elements of an "array"
var total = 0;
for (var i = 0; i < a.length; i++) {

total += a[i];
}
return total;

}

• anything with length and numeric props. up to that length works:

> var a1 = [3, 4, 5];
> sum(a1)
12
> var o1 = {0:42, 9:77, 1:8, length:2}; // quack
> sum(o1)
50

