
CSE 341

Lecture 22

Macros; extending Scheme's syntax

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Macros

• macro: A rule or pattern for text substitution.

� macros are expanded to convert one text string to another

• macro systems are found in programming languages

� rules for rewriting programs

� a pre-pass before evaluation

• macros have a bad reputation in the PL community

� considered to be a "hack" in many languages

3

How are macros implemented?

• Sublexical: Replace car with hd, cart with hdt.

� No macro system does this; so a macro-expander must

know how to break programs into tokens.

• Pre-parsing (token-based): Replace add(x,y) with

x + y (where x and y stand for expressions)

� can cause errors in complex expressions

• Pre-binding: Replacing car with hd would turn:

� (let* ((hd 0) (car 1)) hd) into:

(let* ((hd 0) (hd 1)) hd)

4

The C preprocessor

• preprocessor : Part of the C language's compilation

process; modifies source code before it is compiled

else if statement#elif test

if statement#if test

if statement; true if name is defined#ifdef name

if statement; true if name is not defined#ifndef name

deletes the given symbol name#undef name

terminates an if or if/else statement#endif

else statement#else

create a preprocessor symbol ("variable")#define name [value]

insert a user file's contents into this file#include "filename"

insert a library file's contents into this file#include <filename>

descriptionfunction

5

Constants

#define NUM_STUDENTS 100

#define DAYS_PER_WEEK 7

...

double grades[NUM_STUDENTS];

int six_weeks = DAYS_PER_WEEK * 6; // 42

printf("Course over in %d days", six_weeks);

� When preprocessor runs before compilation, 7 is literally

inserted into the code wherever DAYS_PER_WEEK is seen

– name DAYS_PER_WEEK does not exist in eventual program

int six_weeks = 7 * 6; // 42

6

Debugging code

#define DEBUG

...

#ifdef DEBUG

// debug-only code

printf("Size of stack = %d\n", stack_size);

printf("Top of stack = %p\n", stack);

#endif

stack = stack->next; // normal code

� How is this different from a bool/int named DEBUG?

7

Preprocessor macros

• macros are like functions, but injected before compilation

#define SQUARED(x) x * x

#define ODD(x) x % 2 != 0

int a = 3;

int b = SQUARED(a);

if (ODD(b))

printf("%d is an odd number.\n", b);

� The above literally converts the code to the following:

int b = a * a;

if (b % 2 != 0) { ...

� (C++ was originally implemented as a set of C macros.)

8

Subtleties of C macros

• preprocessor is dumb; it just replaces tokens

#define foo 42

int food = foo; // int food = 42;

int foo = foo + foo; // int 42 = 42 + 42;

• preprocessor can be used to do stupid/evil things

#define + -

#define 0 1

#define < >

9

Caution with macros

• since macros are injected directly, strange things can

happen if you pass them complex values:

#define ODD(x) x % 2 != 0

...

if (ODD(1 + 1)) {

printf("It is odd.\n"); // prints!

}

� The above literally converts the code to the following:

if (1 + 1 % 2 != 0) {

10

More macro bugs

#define SUMSQUARES(a, b) a*a + b*b

...

// what goes wrong in the expressions below?

int a = 4, b = 3;

int c = SUMSQUARES(a, b);

int d = SUMSQUARES(a + 1, b - 1);

int e = d * SUMSQUARES(a, b);

int f = SUMSQUARES(a++, --b);

// int d = a + 1*a + 1 + b - 1*b - 1;

11

Correcting the macro

• the ODD macro is better written as:

#define ODD(x) ((x) % 2 != 0)

...

if (ODD(1 + 1)) {

printf("It is odd.\n");

}

� Now the above literally converts the code to the following:

if (((1 + 1) % 2 != 0)) {

� Always surround macro parameters in parentheses.

– (And you thought Scheme had too many!)

12

Hygienic macros

• The problem is that C's macro system is really just a hack

bolted onto the language after the fact.

• hygienic macro: One whose evaluation has predictable

and expected results, and whose expansion is guaranteed

not to cause collisions with existing symbol definitions.

� Scheme features a powerful hygienic macro system.

13

Defining macros

(define-syntax name

(syntax-rules (keywords)

(pattern expr)))

• defines a new piece of syntax that uses the given

keywords in the given pattern, and evaluates them to

produce the given expression

• macros can be used to delay/avoid evaluation

14

Macro example

(define-syntax if2

(syntax-rules ()

((if2 test e1 e2)

(cond (test e1)

(else e2)))))

• The above macro defines a new expression if2 that

behaves like Scheme's if expression

� if2 is implemented in terms of cond

� as with the real if, if2 evaluates only one of e1/e2

– (if we had written if2 as a procedure, this would not be so)

15

Macro example

(define-syntax if3

(syntax-rules (then else)

((if3 e1 then e2 else e3)

(if e1 e2 e3))))

• The above macro defines a new expression if3 that adds

new keywords then and else

� Example:

(if3 (< 2 3) then 42 else (+ 5 9))

16

Macros with redundancy

; produces a number twice as big as x!

(define-syntax double

(syntax-rules ()

((double x) (+ x x))))

• problem: redundant (evaluates x twice)

� How can we improve it?

17

Macro with local variable

; produces a number twice as big as x!

(define-syntax double

(syntax-rules ()

((double x)

(let ((temp x))

(+ temp temp)))))

• by capturing x's result as temp, it is evaluated just once

18

A silly variation

; produces a number twice as big as x!

(define-syntax double

(syntax-rules ()

((double x)

(let* ((temp2 0) (temp x))

(+ temp temp temp2))))

• consider the following version of double...

� works the same way, but uses a new useless variable zero

19

A potential problem situation

> (define temp 17)

> (double temp)

• if Scheme didn't have hygienic macros, would become:

((let* ((temp 0) (temp2 temp))

(+ temp temp temp2))))

� It would equal 0 every time!

• Scheme macros carefully rename any local variables to

avoid any chance of conflict with the surrounding code.

20

How hygienic macros work

• Internally, a hygienic macro system:

� gives fresh names to local variables in macros on each use

� binds free variables in macros where the macro is defined

• Without hygiene, macro programmers:

� get very creative with local-variable names in macros

� get creative with helper-function names too

� avoid local variables, which cause unpredictable effects

• Hygiene is a big idea for macros, but sometimes is not

what you want. (Sometimes you just want text replace!)

21

Macro exercises

• Define a macro named neither that accepts two

boolean expressions and returns #t if both are false.

� Example: (neither (> 5 9) (= 1 4)) returns #t

� (Use short-circuit evaluation.)

• Define a macro let1 that is like let but defines only one

symbol, and uses only one set of parentheses.

� Example:

(define (x+y^2 x y)

(let1 (sum (+ x y))

(* sum sum)))

22

Macro exercise solutions

(define-syntax neither

(syntax-rules ()

((neither expr1 expr2)

(cond (expr1 #f)

(expr2 #f)

(else #t)))))

(define-syntax let1

(syntax-rules ()

((let1 (name value) expr)

(let ((name value)) expr))))

23

More macro exercises

• Define a macro maybe that takes an expression and has a

50/50 chance of evaluating it; else it does nothing.

� Example: (maybe (display "hello!"))

• Solution:

(define-syntax maybe

(syntax-rules () ((maybe expr)

(if (< 0.5 (random)) expr '()))))

24

Macros for streams

• Streams are hard to use. Macros/helpers make it easier!

(define-syntax scons (syntax-rules ()
((scons x y) (cons x (delay y)))))

(define scar car)
(define (scdr stream) (force (cdr stream)))

• Example:

(define ones (scons 1 ones))

(define (ints-from n) (scons n (ints-from (+ n 1))))
(define nat-nums (ints-from 1))

25

Including files

(load "filename")

• includes the given file's code in your program

> (include "utility.scm")

