CSE 341
Lecture 21

delayed evaluation; thunks; streams

slides created by Marty Stepp
http://www.cs.washington.edu/341/

Lazy evaluation

e |azy evaluation: delaying a computation until it is needed
(or skipping it entirely, if its result is never used)
(or avoiding re-computing a previously computed value)

e \Where are some places Java uses lazy evaluation?
» short-circuiting booleans with && and | |
» skip evaluation of the un-taken branch of an 1f/else
* (advanced) interning of strings
" (advanced) classes are not loaded until they are referenced

Lazy evaluation in Scheme

e Scheme mostly uses eager evaluation, but ...

e unused branches of if/cond aren't evaluated

(if test
exprl ; true case
expr2) ; false case

= How could we verify that this is so?

Scheme argument evaluation

e suppose we have the following procedure:

(define (foo b el e2)
(if b
(+ el el el) ; true case
(* e2 e2))) ; false case

e will the following code evaluate both the expressions?
(foo #t (+ 2 3) (* 4 5))

= why or why not?

Procedures with side effects

® suppose we create a procedure with a side effect:

(define (square Xx)
(display "squaring ")
(display x) (newline)
(* x X))

e what output will the following code produce?
(if (> 2 3) (square 4) (square 7))

Procedure calls as arguments

e with the previously defined square plus the code below:

(define (foo b el e2)
(if b
(+ el el el) ; true case
(* e2 e2))) ; false case

e what output will the following code produce?
(foo (> 2 3) (square 4) (square 7))

= How can we modify it to evaluate only one of the two?

e thunk: A piece of code or wrapper function used to
perform a delayed computation.

= 3 value that has already been "thought of"...think = thunk
" first used in the influential ALGOL-60 language's compiler
" also used as compatibility wrappers; in DLLs, inheritance...

e thunks are implemented as zero-argument procedures

" instead of passing expression e (costly to compute?), pass a
0-arg procedure that, when called, computes/returns e

e we can modify our foo procedure to accept thunks:

(define (foo b thl th2)
(if b
(+ (thl) (thl) (thl)) ; true case
(* (th2) (th2)))) ; false case

e we'll also modify our call to pass two thunks:

(foo (> 2 3)
(lambda () (square 4))
(lambda () (square 7)))

" now what output does the call produce?

Problem: re-evaluating thunks

e our foo procedure evaluates each thunk multiple times:

> (foo (= 2 2)
(lambda () (square 4))
(lambda () (square 7)))
squaring 4
squaring 4
squaring 4
16

*= how can we stop it from re-computing the same value?

Language support for delays

(delay (procedure call))

e some langs. include syntax to ease delayed computation
e delay accepts a call and, rather than executing it, wraps
it in a structure called a promise that can execute it later:

> (define x (delay (square 4)))
> X
#<struct:promise: x>

10

Forcing a delayed execution

(force delay)

e force accepts a promise, executes it (if necessary), and
returns the result

> (define x (delay (square 4)))
> X

#<struct:promise: x>

> (force x)

16

> X

#<struct:promise!4>

11

Use the force, Luke...

e we can modify our Too procedure to accept promises:

(define (foo b pl p2)
(if b
(+ (force pl) (force pl) (force pl))
(* (force p2) (force p2))))

e we'll also modify our call to pass two promises:

(foo (> 2 3)
(delay (square 4))
(delay (square 7)))

" now what output does the call produce?
12

e stream: An "infinite" list.

= example: the list of all natural numbers: 1, 2, 3, 4, ...

L2 1|23 ..

e Whuck?
= can't actually be infinite, for obvious reasons
" but appears to be infinite, to the code using the list

" jdea: delay evaluation of each list pair's tail until needed
— uses a procedure to describe the element that comes next

e like Unix pipes: cmd1l | cmd2; 2 "pulls" input from 1

13

Streams in Scheme

e a3 stream is a thunk that, when called, returns a pair:
(next-answer . next-thunk)

car car car cdr
thunk! all >| value | thunk! all >| value | thunk! g
* first element: (car (stream))

» second element: (car ((cdr (stream))))
* third element: (car ((cdr ((cdr (stream))))))

e nice division of labor:
= stream's creator knows how to generate values

= client knows how many are needed, what to do with each
14

Examples of streams

; an endless list of 1s.
(define ones (lambda () (cons 1 ones)))

; @ list of all natural numbers: 1, 2, 3, 4,

(define (nat-nums2)
(define (helper x)
(cons x (lambda () (helper (+ x 1)))))
(helper 1))

; a list of all powers of two: 1, 2, 4, 8,
16,

(define (nat-nums2)
(define (helper x) i5

(define ones (lambda () (cons 1 ones)))

e accessing the elements of a stream:
* first element: (car (ones))

= second: (car ((cdr (ones))))
= third: (car ((cdr ((cdr (ones))))))
fourth: (car ((cdr ((cdr ((cdr (ones)))mmm

* Remember, parentheses matter! (e) calls the thunk e .

16

Stream exercises

e Define a stream called harmonic that holds the
elements of the harmonic series: 1 +1/2+1/3 +1/4 + ...

e Define a stream called fibs that represents the
Fibonacci numbers. ALL OF THEM!

(car (fibs))
(car ((cdr (fibs))))

(car ((cdr ((cdr (fibs))))))

(car ((cdr ((cdr ((cdr (fibs))))))))

(car ((cdr ((cdr ((cdr ((cdr (fibs))))))))))

Nivwv NvVikRyvV Ry

17

Useful stream procedures

; convenience procedures to create and examine a stream

(define-syntax cons-stream (syntax-rules ()
((cons-stream x y) (cons x (delay y)))))

(define car-stream car)

(define (cdr-stream stream) (force (cdr stream)))

(define null-stream? null?)

(define null-stream '())

; returns the first n elements of the given stream
(define (stream-section n stream)
(cond ((= n @) "())
(else (cons (head stream) (stream-section (- n 1)
(tail stream))))))

; merges two streams together
(define (add-streams sl s2)
(let ((hl (head s1)) (h2 (head s2)))
(cons-stream (+ hl h2)
(add-streams (tail sl1) (tail s2)))))

18

Using the stream procedures

> (define ones (cons-stream 1 ones))
> (stream-section 7 ones)
(1111111)

> (define (integers-starting-from n)
(cons-stream n (integers-starting-from (+ n 1))))
> (define nat-nums (integers-starting-from 1))
> (stream-section 10 nat-nums)
(1234567889 10)

> (define fibs (cons-stream 1

(cons-stream 1 (add-streams (tail fibs) fibs))))
> (stream-section 14 fibs)
(112358 13 21 34 55 89 144 233 377)

19

