
CSE 341

Lecture 21

delayed evaluation; thunks; streams

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Lazy evaluation

• lazy evaluation: delaying a computation until it is needed

(or skipping it entirely, if its result is never used)

(or avoiding re-computing a previously computed value)

• Where are some places Java uses lazy evaluation?

� short-circuiting booleans with && and ||

� skip evaluation of the un-taken branch of an if/else

� (advanced) interning of strings

� (advanced) classes are not loaded until they are referenced

3

Lazy evaluation in Scheme

• Scheme mostly uses eager evaluation, but ...

• unused branches of if/cond aren't evaluated

(if test
expr1 ; true case
expr2) ; false case

� How could we verify that this is so?

4

Scheme argument evaluation

• suppose we have the following procedure:

(define (foo b e1 e2)
(if b

(+ e1 e1 e1) ; true case
(* e2 e2))) ; false case

• will the following code evaluate both the expressions?

(foo #t (+ 2 3) (* 4 5))

� why or why not?

5

Procedures with side effects

• suppose we create a procedure with a side effect:

(define (square x)
(display "squaring ")

(display x) (newline)

(* x x))

• what output will the following code produce?

(if (> 2 3) (square 4) (square 7))

6

Procedure calls as arguments

• with the previously defined square plus the code below:

(define (foo b e1 e2)
(if b

(+ e1 e1 e1) ; true case
(* e2 e2))) ; false case

• what output will the following code produce?

(foo (> 2 3) (square 4) (square 7))

� How can we modify it to evaluate only one of the two?

7

Thunks

• thunk: A piece of code or wrapper function used to

perform a delayed computation.

� a value that has already been "thought of"...think → thunk

� first used in the influential ALGOL-60 language's compiler

� also used as compatibility wrappers; in DLLs, inheritance...

• thunks are implemented as zero-argument procedures

� instead of passing expression e (costly to compute?), pass a

0-arg procedure that, when called, computes/returns e

8

Scheme thunks

• we can modify our foo procedure to accept thunks:

(define (foo b th1 th2)
(if b

(+ (th1) (th1) (th1)) ; true case
(* (th2) (th2)))) ; false case

• we'll also modify our call to pass two thunks:

(foo (> 2 3)
(lambda () (square 4))

(lambda () (square 7)))

� now what output does the call produce?

9

Problem: re-evaluating thunks

• our foo procedure evaluates each thunk multiple times:

> (foo (= 2 2)

(lambda () (square 4))

(lambda () (square 7)))

squaring 4

squaring 4

squaring 4

16

� how can we stop it from re-computing the same value?

10

Language support for delays

(delay (procedure call))

• some langs. include syntax to ease delayed computation

• delay accepts a call and, rather than executing it, wraps

it in a structure called a promise that can execute it later:

> (define x (delay (square 4)))

> x

#<struct:promise:x>

11

Forcing a delayed execution

(force delay)

• force accepts a promise, executes it (if necessary), and

returns the result

> (define x (delay (square 4)))

> x

#<struct:promise:x>

> (force x)

16

> x

#<struct:promise!4>

12

Use the force, Luke...

• we can modify our foo procedure to accept promises:

(define (foo b p1 p2)
(if b

(+ (force p1) (force p1) (force p1))

(* (force p2) (force p2))))

• we'll also modify our call to pass two promises:

(foo (> 2 3)
(delay (square 4))

(delay (square 7)))

� now what output does the call produce?

13

Streams

• stream: An "infinite" list.

� example: the list of all natural numbers: 1, 2, 3, 4, ...

• Whuck?

� can't actually be infinite, for obvious reasons

� but appears to be infinite, to the code using the list

� idea: delay evaluation of each list pair's tail until needed

– uses a procedure to describe the element that comes next

• like Unix pipes: cmd1 | cmd2; 2 "pulls" input from 1

1L2 2 3 ...

14

Streams in Scheme

• a stream is a thunk that, when called, returns a pair:

(next-answer . next-thunk)

� first element: (car (stream))

� second element: (car ((cdr (stream))))

� third element: (car ((cdr ((cdr (stream))))))

• nice division of labor:

� stream's creator knows how to generate values

� client knows how many are needed, what to do with each

thunk!valuethunk!
call

thunk!value
call ...

car cdr car cdr

15

Examples of streams

; an endless list of 1s.
(define ones (lambda () (cons 1 ones)))

; a list of all natural numbers: 1, 2, 3, 4,
...

(define (nat-nums2)
(define (helper x)
(cons x (lambda () (helper (+ x 1)))))

(helper 1))

; a list of all powers of two: 1, 2, 4, 8,
16, ...

(define (nat-nums2)
(define (helper x)
(cons x (lambda () (helper (* x 2)))))

16

Using streams

(define ones (lambda () (cons 1 ones)))

• accessing the elements of a stream:

� first element: (car (ones))

� second: (car ((cdr (ones))))

� third: (car ((cdr ((cdr (ones))))))

fourth: (car ((cdr ((cdr ((cdr (ones))))))))

...

� Remember, parentheses matter! (e) calls the thunk e .

17

Stream exercises

• Define a stream called harmonic that holds the

elements of the harmonic series: 1 + 1/2 + 1/3 + 1/4 + ...

• Define a stream called fibs that represents the

Fibonacci numbers. ALL OF THEM!

> (car (fibs))
1
> (car ((cdr (fibs))))
1
> (car ((cdr ((cdr (fibs))))))
2
> (car ((cdr ((cdr ((cdr (fibs))))))))
3
> (car ((cdr ((cdr ((cdr ((cdr (fibs))))))))))
5
...

18

Useful stream procedures

; convenience procedures to create and examine a stream
(define-syntax cons-stream (syntax-rules ()

((cons-stream x y) (cons x (delay y)))))
(define car-stream car)
(define (cdr-stream stream) (force (cdr stream)))
(define null-stream? null?)
(define null-stream '())

; returns the first n elements of the given stream
(define (stream-section n stream)

(cond ((= n 0) '())
(else (cons (head stream) (stream-section (- n 1)

(tail stream))))))

; merges two streams together
(define (add-streams s1 s2)
(let ((h1 (head s1)) (h2 (head s2)))

(cons-stream (+ h1 h2)
(add-streams (tail s1) (tail s2)))))

19

Using the stream procedures

> (define ones (cons-stream 1 ones))

> (stream-section 7 ones)

(1 1 1 1 1 1 1)

> (define (integers-starting-from n)

(cons-stream n (integers-starting-from (+ n 1))))

> (define nat-nums (integers-starting-from 1))

> (stream-section 10 nat-nums)

(1 2 3 4 5 6 7 8 9 10)

> (define fibs (cons-stream 1

(cons-stream 1 (add-streams (tail fibs) fibs))))

> (stream-section 14 fibs)

(1 1 2 3 5 8 13 21 34 55 89 144 233 377)

