
CSE 341

Lecture 20

Mutation; memoization

slides created by Marty Stepp

http://www.cs.washington.edu/341/

Mutation and mutability

3

Mutating variables

(set! name expression)

• Unlike ML, in Scheme all top-level bindings are mutable!

> (define x 3) ; int x = 3;

> (set! x 5) ; x = 5;

– Legal, but changing bound values is generally discouraged.

– Convention: Any procedure that mutates ends with !

4

Mutations and environment

• What does the following code do to the environment?

(define x 3)

(define (f n) (+ n x))

(set! x 5)

(define x 17)

(define (g k) (* k x))

(set! x 8)

valuesymbol

global environment

...system libraries...

x

valuesymbol

f's environment

......

(to be set on call)n

x

valuesymbol

g's environment

......

(to be set on call)k

5

define vs. set!

• What is the difference between these two procedures?

(define x 3)

(define (f k) (define (g k)

(define x 5) (set! x 5)

(* x k)) (* x k))

• both return the same thing for any given call, but...

� f defines a local x and uses it; global x is unchanged

� g mutates the global x and uses its new value

6

Mutation for "private" variables

• Use let to create a private mutable variable:

(define incr null) ; stub for procedure
(define get null) ; stub for procedure
(let ((n 0))

(set! incr (lambda (i) ; replace stubs
(set! n (+ n i)))) ; n += i

(set! get (lambda () n))) ; return n

> (get) > (incr 8)
0 > (get)
> (incr 3) 11
> (get) > n

3 * reference to undefined ...

7

Lists and equality

(define L1 '(2 4 7))

(define L2 '(2 4 7))

(define L3 L2)

• Scheme lists are linked structures, as in ML

� two lists declared with the same value are separate lists

� one list declared to be another list will be a reference to

that same list object in memory (shared)

(We didn't care much about this distinction in ML... why?)

2L1 4 7

L3

2L2 4 7

8

Recall: Testing for equality

(define L1 '(2 4 7))

(define L2 '(2 4 7))

(define L3 L2)

• (eq? expr1 expr2) ; reference/ptr comparison

• (eqv? expr1 expr2) ; compares values/numbers

• (= expr1 expr2) ; like eqv; numbers only

• (equal? expr1 expr2) ; deep equality test

� Which are true for L1 and L2? L3?

2L1 4 7

L3

2L2 4 7

9

Sharing between lists

(define L4 (cons 8 L1))

(define L5 (append '(5 6) L2)

• Which of the following are true?

(eq? L4 '(8 2 4 7))
(equal? L5 '(5 6 2 4 7))
(equal? L1 (cdr L4))
(eq? L1 (cdr L4))
(equal? L2 (cddr L5))
(eq? L2 (cddr L5))
(eq? L3 (cddr L5))

2L1 4 7

L3

2L2 4 7
8L4

5L5 6

10

Mutating lists

(set-car! list expr)

(set-cdr! list expr)

• these procedures mutate the contents of lists (!)

• any reference to that list will see the change

(set-car! L1 9)

(set-cdr! L2 '(6 5 1))

(set-car! and set-cdr! are disabled in "Pretty Big" Scheme)

9L1 4 7

L3

2L2 6 5 1

11

Mutable lists

(mcons expr mutableList)

(mcar mutableList)

(mcdr mutableList)

(set-mcar! mutableList expr)

(set-mcdr! mutableList expr)

• Scheme has a separate mutable list type that you can use

to explicitly create a list that can be modified

� can build up a list by calling mcons with null

� mutable lists display on the interpreter with {...}

(mutable lists are not allowed on our homework)

Memoization

13

Exercise

• Define a procedure count-factors that accepts an

integer parameter and returns how many factors it has.

� Possible solution:

(define (count-factors n)

(length (filter (lambda (x) (= 0 (modulo n x)))

(range 1 n))))

� Problem: slow for large values; "forgets" after each call
> (count-factors 999990)

48 ; takes 4-5 seconds

> (count-factors 999990)

48 ; takes 4-5 seconds, AGAIN!

14

Memoization

• memoization: Optimization technique of avoiding re-

calculating results for previously-processed function calls.

� often uses a cache of previously computed values

• General algorithmic pattern:

function compute(param):

if I have never computed the result for this value of param before:

compute the result for param.

store (param, result) into cache data structure.

return result.

else // I have computed this result before; don't re-compute

look up (param, result) in cache data structure.

return result.

15

Memoization w/ association lists

• a natural structure to cache prior calls is a map

� recall: Scheme implements maps as association lists

> (define phonebook (list '(Marty 6852181)

'(Stuart 6859138) '(Jenny 8675309)))

> (assoc 'Stuart phonebook)

(Stuart 6859138)

> (cdr (assoc 'Jenny phonebook)) ; get value

8675309

� we'll remember results of past calls to count-factors by

storing them in a (mutating) association list

16

Memoizing count-factors code

; cache of past calls as (n . count) pairs; initially empty

(define cache null)

(define (count-factors n)

(define (divides? x) (= 0 (modulo n x)))

; look up n in the cache (see if we computed it before)

(let ((memory (assoc n cache)))

(if memory ; if n is in cache, return cached value.

(cdr memory)

; else, count the factors...

(let ((count (length (filter divides? (range 1 n)))))

; store them into the cache...

(set! cache (cons (cons n count) cache))

; and return the result.

count))))

17

Problem: undesired global cache

• the cache is a global variable

� can be seen (or modified!) by other code

• solution: define it locally

� to do this properly, we must define count-factors using

an inner helper and local inner cache

� count-factors is set equal to its own helper

– bizarre, but ensures proper closure over the local cache

18

Improved count-factors code

(define count-factors

(let ((cache null)) ; local cache; initially empty

; inner helper that has access to the local cache

(define (helper n)

(define (divides? x) (= 0 (modulo n x)))

; look up n in the cache (see if we computed it before)

(let ((memory (assoc n cache)))

(if memory ; if n is in cache, return cached value.

(cdr memory)

; else, count the factors...

(let ((count (length (filter divides? (range 1 n)))))

; store them into the cache...

(set! cache (cons (cons n count) cache))

; and return the result.

count))))

helper)) ; return helper; sets count-factors equal to helper

