CSE 341
Lecture 17

Higher-order procedures; lists and pairs

slides created by Marty Stepp
http://www.cs.washington.edu/341/




Higher-order procedures

; apply procedure f to each element of 1st
(map f Lst)

; retain only elements where p returns #t
(filter p Lst)

; reduce list; f takes 2 elements -> 1
(foldl f initialValue Lst)
(foldr f initialValue Lst)

e equivalent to ML's map/List.filter/fold*
e each takes a procedure (or "predicate") to apply to a list



Higher-order exercise

e Implement our own versions of map and filter, named
mapx and filterx.

"meg.(mapx ¥ '(1 2 3 4 5))
"eg. (filterx p '(1 2 3 4 5))



Higher-order solutions

; Applies procedure f to every element of 1lst.
(define (mapx f 1lst)
(if (null? 1st)
()
(cons (f (car 1lst)) (mapx f (cdr 1st)))))

; Uses predicate p to keep/exclude elements of 1st.
(define (filterx p 1st)
(cond ((null? 1st) ())
((p (car 1lst)) (cons (car 1st)
(filterx p (cdr 1lst))))
(else (filterx p (cdr 1st)))))



Anonymous procedures ("lambdas")

(lambda (paraml ... paramN) expr)

e defines an anonymous local procedure
" you can pass a lambda to a higher-order function, etc.
* analogous to Ml's: fn(params) => expr

= Example (retain only the even elements of a list):

(filter (lambda (n) (= @ (modulo n 2)))
(range 0 100))



Lambda exercise

e Using higher-order procedures and lambdas, find the sum
of the factors of 24.

= Hint: First get all the factors in a list, then add them.

e Solution:
(foldl + ©
(filter (lambda (n)
(= © (modulo 24 n)))
(range 1 24)))



Improper lists (pairs)



Improper lists (pairs)

> (cons 1 '(2 3 4))

(123 4) 1 2] 3] T4/
> (cons 1 '(2))

(12) 1 121/

> (cons 1 2)

(1. 2) ]2

e if you cons two non-list values together, you get a pair

= 3 list node whose data field stores the first value, and
whose next field stores the second value



Working with improper lists

(define p (cons 1 2))
(car p)

(cdr p)

data | next

vV NV kv v

(cons p 3)

((1 . 2) . 3)

> (cons 3 p)

(31 . 2)

> (cons p '(3 4))

((1 . 2) 34)

> (cons p (cons 3 4))

((1 .2) 3. 4)

> (length p)

expects argument of type <proper List>



Why improper lists?

e a consequence of Scheme's relaxed dynamic typing
= |ist nodes ("pairs") usually store a list as their "next"

= putif the "next" is anything other than another pair or null,
the list is improper

e an improper list is Scheme's closest analog to ML's tuple

= used for storing short sequences of values that must be of
a certain length (don't want to handle arbitrary length lists)

10



Var-args

e variadic procedure: can take a varying number of params
= we have already seen this: +, *, and, or, 1ist, etc.

e Three ways to define a Scheme procedure's parameters:
= Jist of parameters: exactly that many must be passed
" single parameter: any number may be passed
" improper list: at least a given number must be passed

11



Fixed args vs. var-args

(define (name paraml ... paramN) expr)

= 3 procedure with exactly N required parameters
(define (bigger a b) (if (> a b) a b))

(define name (lambda param expr))
= 3 procedure that accepts any number of parameters

" must be defined with the 1ambda syntax
(define sum-all (lambda L (foldl + @ L)))

12



Var-args via improper lists

(define (name paraml ... paramN . rest) expr)

= 3 procedure with param1-N required parameters, and a
list of varying length to represent additional params passed

= allows passing a variable number of arguments (= N)

e Example:
(define (multiply-all-by n . args)
(define (f k) (* n k))
(map f args))
> (multiply-all-by 5 2 3 -1 7)
(16 15 -5 35)

13



Associative lists (maps) with pairs

e Recall: a map associates keys with values
= can retrieve a value later by supplying the key

e in Scheme, a map is stored as a list of key/value pairs:
(define phonebook (list '(Marty 6852181)
'(Stuart 6859138) '(Jenny 8675309)))
e ook things up in a map using the assoc procedure:

> (assoc 'Stuart phonebook)

(Stuart 6859138)

> (cdr (assoc 'Jenny phonebook)) ; get value
8675309

14



