
CSE 341

Lecture 13

signatures

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Recall: Why modules?

• organization: puts related code together

• decomposition: break down a problem

• information hiding / encapsulation:

protect data from damage by other code

• group identifiers into namespaces; reduce # of globals

• provide a layer of abstraction; allows re-implementation

• ability to rigidly enforce data invariants

• provides a discrete unit for testing

3

A structure's signature

- structure Helpers = struct
fun square(x) = x*x;
fun pow(x, 0) = 1 | pow(x, y) = x * pow(x, y - 1);

end;
structure Helpers :

sig

val square : int -> int

val pow : int * int -> int

end

• every structure you define has a public signature

� signature: Set of symbols presented by a module to clients

� by default, all definitions are presented in its signature

4

Limitations of structures

• Ways that Java hides information in a class?

� make a given field and method private, protected

� create an interface or superclass with fewer members;

refer to the object through that type (polymorphism)

• signature: A group of ML declarations of functions, types,

and variables exported to clients by a structure / module.

� combines Java's concepts of private and interface

5

Using signatures

• 1. Define a signature SIG that declares members A, B, C.

• 2. Structure ST1 defines A, B, C, D, E.

� ST1 can specify that it wants to use SIG as its signature.

� Now clients can call only A, B, C (not D or E).

• 3. Structure ST2 defines A, B, C, F, G.

� ST2 can also specify to use SIG as its public signature.

� Now clients can call only A, B, C (not F or G).

6

Signature syntax

signature NAME =
sig

definitions

end;

a signature can contain:

• function declarations (using val, not fun) ... no bodies

• val declarations (variables; class constants), definitions

• exceptions

• type declarations, definitions, and datatypes

7

Function declarations

val name: paramType * paramType ...

-> resultType;

• Example:

val max: int * int -> int;

• signatures don't have function definitions, with fun

• they instead have declarations, with val

• lists parameter types return type (no implementation)

8

Abstract type declarations

type name;

• Example:

type Beverage;

• signatures shouldn't always define datatypes

� this can lock the implementer into a given implementation

• instead simply declare an abstract type

� this indicates to ML that such a type will be defined later

� now the declared type can be used as a param/return type

9

Signature example

(* Signature for binary search trees of integers. *)
signature INTTREE =
sig

type intTree;

val add: intTree -> intTree;
val height : intTree -> int;
val min : intTree -> int option;

end;

10

Implementing a signature

structure name :> SIGNATURE =
struct

definitions

end;

• Example:

structure IntTree :> INTTREE =
struct

...
end;

11

Signature semantics

• when a structure implements a signature,

� structure must implement all members of the signature

� by convention, signature names are ALL_UPPERCASE

12

Signature exercise

• Modify the Rational structure to

implement a RATIONAL signature.

� In the signature, hide any members that

clients shouldn't use directly.

(What members should be in the signature?)

13

Signature solution 1

(* Type signature for rational numbers. *)
signature RATIONAL = sig

(* notice that we don't specify the innards of rational type *)
type rational;
exception Undefined;

(* notice that gcd and reduce are not included here *)
val new : int * int -> rational;
val add : rational * rational -> rational;
val toString : rational -> string;

end;

14

Structure solution 2

(* invariant: for Fraction(a, b), b > 0 andalso gcd(a, b) = 1 *)
structure Rational :> RATIONAL = struct

datatype rational = Whole of int | Fraction of int * int;
exception Undefined of string;

fun gcd(a, 0) = abs(a) (* 'private' *)
| gcd(a, b) = gcd(b, a mod b);

fun reduce(Whole(i)) = Whole(i) (* 'private' *)
| reduce(Fraction(a, b)) =

let val d = gcd(a, b)
in if b = d then Whole(a div d)

else Fraction(a div d, b div d)
end;

fun new(a, 0) = raise Undefined("cannot divide by zero")
| new(a, b) = reduce(Fraction(a, b));

fun add(Whole(i), Whole(j)) = Whole(i + j)
| add(Whole(i), Fraction(c, d)) = Fraction(i*d + c, d)
| add(Fraction(a, b), Whole(j)) = Fraction(a + j*b, b)
| add(Fraction(a, b), Fraction(c, d)) =

reduce(Fraction(a*d + c*b, b*d));

(* toString unchanged *)
end;

15

Using a structure by its signature

- val r = Rational.new(3, 4);
val r = - : Rational.rational

- Rational.toString(r);
val it = "3/4" : string

- Rational.gcd(24, 56);
stdIn:5.1-5.13 Error: unbound variable or constructor:

gcd in path Rational.gcd

- Rational.reduce(r);
stdIn:1.1-1.15 Error: unbound variable or constructor: ...
- Rational.Whole(5);
stdIn:1.1-1.15 Error: unbound variable or constructor: ...

• using the signature restricts the structure's interface

� clients cannot access or call any members not in the sig

16

A re-implementation

(* Alternate implementation using a tuple of (numer, denom). *)
structure RationalTuple :> RATIONAL = struct

type rational = int * int;
exception Undefined;

fun gcd(a, 0) = abs(a)
| gcd(a, b) = gcd(b, a mod b);

fun reduce(a, b) =
let val d = gcd(a, b)
in if b >= 0 then (a div d, b div d) else reduce(~a, ~b)
end;

fun new(a, 0) = raise Undefined
| new(a, b) = reduce(a, b);

fun add((a, b), (c, d)) = reduce(a * d + c * b, b * d);

fun toString(a, 1) = Int.toString(a)
| toString(a, b) = Int.toString(a) ^ "/" ^ Int.toString(b);

fun fromInteger(a) = (a, 1);
end;

17

Another re-implementation

(* Alternate implementation using a real number;
imprecise due to floating point round-off errors. *)

structure Rational :> RATIONAL = struct
type rational = real;
exception Undefined;

fun new(a, b) = real(a) / real(b);
fun add(a, b:rational) = a + b;
fun toString(r) = Real.toString(r);

end;

18

Signature exercise 2

• Use the new signature to enforce these invariants:

� All fractions will always be created in reduced form.

– (In other words, for all fractions a/b, gcd(a, b) = 1.)

� Negative fractions will be represented as -a / b, not a / -b.

– (In other words, for all fractions a/b, b > 0.)

• Add the ability for clients to use the Whole constructor.

• Add operations such as ceil, floor, round, subtract,

multiply, divide, ...

