CSE 341
Lecture 12

structures

slides created by Marty Stepp
http://www.cs.washington.edu/341/

e module: A separate, self-contained, reusable,
interchangeable software component.

" basis of the idea of modular programming

e ML's module system includes:

= structures
= sighatures
= functors

(
(
(

e classes)
e interfaces)

ke parameterized class factories)

Why modules?

1=

e organization: puts related code together

e decomposition: break down a problem

e information hiding / encapsulation: a3
protect data from damage by other code

e group identifiers into namespaces; reduce # of globals
e provide a layer of abstraction; allows re-implementation
e ability to rigidly enforce data invariants

e provides a discrete unit for testing

Structure syntax

structure name =
struct

definitions
end;

a structure can contain:
e function definitions

e val declarations (variables; class constants)
e exceptions

e type definitions and datatypes

Structure example

(* Functions and data types for binary search trees of integers. *)

structure IntTree = struct
datatype intTree = Empty | Node of int * intTree * intTree;

(* Adds the given value to the tree in order.
Produces/returns the new state of the tree node after the add. *)
fun add(Empty, value) = Node(value, Empty, Empty)
| add(n as Node(data, left, right), value) =
if value < data then Node(data, add(left, value), right)
else if value > data then Node(data, left, add(right, value))
else n; (* duplicate; no change *)

(* Produces the height of the given tree.
An Empty tree has a height of 0. *)
fun height(Empty) = ©
| height(Node(_, left, right)) =
1 + Int.max(height(left), height(right));

(* Produces the smallest value in the tree, if the tree has any data. *)
fun min(Node(data, Empty, right)) = SOME data
| min(Node(data, left, right)) = min(left)
| min(Empty) = NONE;
end;

Using a structure

structure.member

val t1l = IntTree.add(IntTree.Empty, 42);
val t2 = IntTree.add(tl, 27);
val mn IntTree.min(t2);

e structure members such as add and Empty are no longer
part of the global namespace

Importing a structure's contents

open structure;

open IntTree;

val t1 = add(Empty, 42);
val t2 = add(tl, 27);
val mn = min(t2);

e if you open a structure, its members are brought into the
global namespace and can be used without a prefix

= +:shorter client code
= -: pnamespace pollution / confusion (e.g. with Int.min)

ML's built-in structures

struct members (partial)

Int int minint maxInt abs min max toString +-*

Real real precision +-*/ abs min max compare floor
ceil trunc round toString fromString

Char char ord chr isAscii isDigit toLower toUpper isSpace
String string size sub concat explode tokens compare ?
Bool bool not toString fromString

List @ :: hd tl null length nth take getltem rev concat
append map find filter partition foldl foldr exists all

http://www.standardml.org/Basis/

More built-in structures

struct members (partial)

Option optionisSome valOf getOpt compose join
General unit exn (exceptions) order ! := o before ignore
Math pi e sqrt sin cos tan asin acos atan pow In log10
IntInf divMod pow log2 orb xorb andb notb << ~>>
TextIO openinopenOut print inputLine stdin stdOut stdErr
OS.Process status success failure exit getEnv sleep

others Date Time Timer Array Vector Socket CommandLine

http://www.standardml.org/Basis/

Structure exercise

= |t can be a whole number, or a numerator/denominator.

e Define a structure Rational to represent
rational numbers, i.e., fractions.

= Define an add function to add two rational numbers.
» Define a toString method to produce a rational string.

= Don't worry (yet) about the notion of reducing fractions.

10

Structure solution

(* initial version of Rational structure that shows how to group
a datatype, constructors, and functions into a single unit. *)

structure Rational = struct
datatype rational = Whole of int | Fraction of int * int;

fun add(Whole i, Whole j) = Whole(i + j)

| add(Whole i, Fraction(j, k)) = Fraction(j + k * i, k)

| add(Fraction(j, k), Whole i) = Fraction(j + k * i, k)

| add(Fraction(a, b), Fraction(c, d)) = Fraction(a*d + b*c, b*d);

fun toString(Whole i) = Int.toString(i)
| toString(Fraction(a, b)) = Int.toString(a) ~ "/"
A Int.toString(b);

end;

11

Structure exercise 2

e Improve the Rational structure by adding features:
= Prohibit rational numbers that have a denominator of 0.

= Represent all rational numbers in reduced form.
— e.g. instead of 4/12, store 1/3.

— make use of Euclid's formula for greatest common divisors:
fun gcd(a, @) = abs(a)
| gcd(a, b) = gcd(b, a mod b)

12

Structure solution 2

(* Includes gcd/reduce and

structure Rational = struct
datatype rational = Whole of int | Fraction of int * int;
exception Undefined;

fun gcd(a, @) = abs(a)
gcd(a, b) = gcd(b, a mod b);

fun reduce(Whole(i)) = Whole(i)
| reduce(Fraction(a, b)) =
let val d = gcd(a, b)
in if b = d then Whole(a div d)
else Fraction(a div d, b div d)
end;

new' function to guarantee invariants *)

fun new(a, 9) raise Undefined (* constructs a fraction *)
| new(a, b) reduce(Fraction(a, b));

fun add(Whole(i), Whole(j)) = Whole(i + j)

| add(Whole(i), Fraction(c, d)) = Fraction(i*d + c, d)

| add(Fraction(a, b), Whole(j)) = Fraction(a + j*b, b)

| add(Fraction(a, b), Fraction(c, d)) =
reduce(Fraction(a*d + c*b, b*d));

(* toString unchanged *)
end; 13

The order datatype

datatype order = LESS | EQUAL | GREATER;

e part of ML standard basis library

e used to indicate whether one value is <, =, > than other
= can be used when defining natural orderings for types

e many structures (Int, Real, String, etc.) define a compare
method that returns a value of type order

=" some also implement <, <=, >, >= operators based on it,
but overloaded operators don't work well on structures

14

Order example

(* Includes gcd/reduce and 'new' function to guarantee invariants *)

structure Rational = struct
datatype rational = Whole of int | Fraction of int * int;

fun compare(Whole(a), Whole(b)) = Int.compare(a, b)

| compare(Fraction(a, b), Whole(c)) = Int.compare(a, c*b)

| compare(Whole(c), Fraction(a, b)) = Int.compare(a, c*b)

| compare(Fraction(a,b), Fraction(c,d)) = Int.compare(a*d, c*b)
end;

15

