
CSE 341

Lecture 10

more about data types; nullable types; option

Ullman 6.2 - 6.3; 4.2.5 - 4.2.6

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Creating new types of data

datatype name = value | value | ... | value;

• a new type that contains only a fixed set of values

� analogous to the enum in Java/C

• Examples:

� datatype CardSuit = Clubs | Diamonds
| Hearts | Spades;

� datatype Color = Red | Green | Blue;

� datatype Gender = Male | Female;

3

Datatype / case exercise

• Define a method haircutPrice that accepts an age and

gender as parameters and produces the price of a haircut

for a person of that age/gender.

� Kids' (under 10 yrs old) cuts are $10.00 for either gender.

� For adults, male cuts are $18.25, female cuts are $36.50.

• Solution:

fun haircutPrice(age, gend) =

if age < 10 then 10.00

else case gend of Male => 18.25

| Female => 36.50;

4

Type constructors

a TypeCtor is either: name of typeExpression

or: value

datatype name = TypeCtor | TypeCtor ...

| TypeCtor;

• datatypes don't have to be just fixed values!

� they can also be defined via "type constructors" that

accept additional information

� patterns can be matched against each type constructor

5

Type constructor example

(* Coffee : type, caffeinated?
Wine : label, year
Beer : brewery name
Water : needs no parameters *)

datatype Beverage =
Water

| Coffee of string * bool
| Wine of string * int
| Beer of string;

- val myDrink = Wine("Franzia", 2009);
val myDrink = Wine ("Franzia",2009) : Beverage

- val yourDrink = Water;
val yourDrink = Water : Beverage

6

Patterns to match type ctors

(* Produces cafe's price for the given drink. *)
fun price(Water) = 1.50
| price(Coffee(type, caf)) = if caf then 3.00

else 3.50
| price(Wine(label, year)) = if year < 2009

then 30.0 else 10.0
| price(Beer(_)) = 4.00;

• functions that process datatypes use patterns

� pattern gives names to each part of the type constructor,

so that you can examine each one and respond accordingly

7

Binary tree type exercise (6.3)

• Define a type IntTree for binary search trees of ints.

� Define a function add that takes a tree and an integer and

adds that value to the given tree in sorted order.

– The function should produce the new tree as its result.

� Define a function height to see how many levels are in a

given tree. (Empty trees have height 0.)

9160

8729

55

42-3

8

Binary tree type solution

(* A type to represent binary search trees of integers. *)
datatype IntTree = Empty

| Node of int * IntTree * IntTree;

(* Adds the given value to the tree in order. *)
fun add(Empty, value) = Node(value, Empty, Empty)
| add(n as Node(data, l, r), value) =

if value < data then Node(data, add(l, value), r)
else if value > data then Node(data, l, add(r, value))
else n;

(* Produces the height of the given tree. Empty is 0. *)
fun height(Empty) = 0
| height(Node(_, left, right)) =

1 + Int.max(height(left), height(right));

9

Concerning null

• null: A special empty value, often called "null" or "nil",

that exists as part of the range of values of a type.

� generally considered to be the absence of a value

� many of the type's operations cannot be performed on null

� What is the benefit of null? How is it used?

� null was created by C.A.R. Hoare in 1965 as part of Algol W

– Hoare later described null as a "billion dollar mistake"

10

How null is used (Java)

• null is often used to represent an error condition

� BufferedReader returns null when input is done

� HashMap returns null when get method cannot find key

• But this is done inconsistently...

� Scanner throws an IOException when input is done

� ArrayList returns -1 when indexOf cannot find a value

� System.in returns -1 when it cannot read a character

• Not possible to return null for Java's primitive types

11

Java primitives and null

• In Java, object variables can be null; primitives cannot.

• Java's int type represents all integers: -2, -1, 0, 1, 2, 3, ...

– How can we represent the lack (absence) of a number?

– 0? -1? not appropriate because these are still legal integers

• Pretend that ints could be null. What would happen?

int noNumber = null;
System.out.println(noNumber); // null
int x = noNumber + 4; // exception
noNumber == null // true
noNumber == 2 // false
noNumber > 5 // exception? false?
noNumber <= 10 // exception? false?

12

Other views of null

Some languages use alternatives to having a null value:

• null object pattern: Language provides an object that has

predictable "empty" behavior.

� can still call methods on it, but get back "empty" results

� example: Difference in Java between null and ""

• option type ("maybe type") pattern: Represents an

optional value; e.g., a function that optionally returns.

� A function can be declared to say, "I might return a value

of type Foo, or I might return nothing at all."

13

Nullable types

• nullable type: A data type that contains null

as part of its range of values.

� In Java, every object type is nullable; primitives are not.

• In ML, only list types are nullable by default (nil, []) .

� but for any type, you can create a modified version of that

type that does contain null (a nullable version of the type)

– this is called an option type

– example: int option is an int that can be null

14

Option types (4.2.5)

NONE (* represents null *)
SOME expr (* a value of a nullable type *)

• A function can be written to return an option type

� some paths in the code return NONE

� other paths return SOME value

– analogy: a bit like an Integer wrapper over an int in Java

� the calling code must explicitly specify how to deal with

the "null case" (NONE) if it should occur, for it to compile

15

Playing with option types

- NONE;

val it = NONE : 'a option

- SOME;

val it = fn : 'a -> 'a option

- SOME 3;

val it = SOME 3 : int option

- SOME "hello";

val it = SOME "hello" : string option

• isSome x returns true if x is a SOME (not NONE)

• valOf x returns the value v stored in x, if x is SOME v

� often not needed due to pattern matching (see next slide)

16

Option type exercise

• Define a function min that produces the smallest integer

value in a binary search tree of integers.

� What if the tree is empty?

9160

8729

55

42-3

17

Option type solution

(* Produces the smallest value in the tree.
Produces NONE if tree is empty. *)

fun min(Empty) = NONE
| min(Node(data, left, right)) =

if left = Empty then SOME data
else min(left);

(* assuming IntTree t is defined *)
- min(t);

val it = SOME ~3 : int option
- valOf (min(t));

val it = ~3 : int
- min(Empty);

val it = NONE : int option 9160

8729

55

42-3

18

Option implementation and usage

• an option is just a simple datatype in ML:

datatype 'a option = NONE | SOME of 'a;

• most functions that use options use patterns for them:

case (min(t)) of
NONE => "oops, empty"

| SOME x => "min is " ^ Int.toString(x)

19

Option: the big picture

• Why not just throw an exception on an empty tree?

exception NoSuchElement;
fun min(Empty) = raise NoSuchElement
| min(Node(data, left, right)) =

if left = Empty then data
else min(left);

� either way is acceptable

– the exception way allows "non-local" error handling

– the option way forces the caller to think about null (NONE)

and to explicitly handle the null case

� Options allow carefully limited introduction of null into a

program without forcing you to test for null everywhere.

