
CSE 341

Lecture 9

type systems; type safety; defining types

Ullman 6 - 6.2; 5.3

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Types

• data type: A classification of a set of values, a set of

operations that can be performed on the values, and a

description of how the values are stored/represented.

• All languages include a set of pre-defined types.

• Most also allow the programmer to define new types.

3

Classifications of type systems

• type checking: Verifying/enforcing constraints of types.

� Example: The length function must return an int.

Example: a^b only works when a and b are strings.

• static typing: Type checking is done at compile time.

� Java, C, C++, C#, ML, Haskell, Go, Scala

• dynamic typing: Type checking is done at run time.

� Scheme, JavaScript, Ruby, PHP, Perl, Python

4

Static vs. dynamic typing

• static

� +: avoids many run-time type errors; verifiable

� -: code is more rigid to write and compile; less flexible

• dynamic

� +: more flexible (can generate type/features at runtime)

� -: can have type errors; errors may not be discovered;

code must perform lots of type checks at runtime (slow)

• both can be used by the same language

� Java type-checks some aspects of object type-casting at

runtime (throws a ClassCastException on type errors)

5

Type safety, "strong" vs. "weak"

• type error: Erroneous or undesirable program behavior

caused by discrepancy between differing data types.

• type safety: Degree to which a language prevents type errors.

� ML is safe; syntactically correct code has no type errors

• strong typing, weak typing: Whether the language has

severe or relaxed restrictions on what operations allow

types to mix (what implicit type conversions are allowed).

� string + int? int * real? string = char?

(strong/weak are vaguely defined, outdated terms)

6

Lack of type safety in C

int main(int argc, char** argv) {
char msg[4] = "abc"; // [97, 98, 99, 0]
int* num = (int*) msg;

printf("%s\n", msg); // abc
printf("%d\n", *num); // 6513249
(*num)++; // (97 + 98*28 + 99*216 + 0*224)

printf("%d\n", *num); // 6513250
printf("%s\n", msg); // bbc

}

� The code allows a string (char[]) to be interpreted as

though it were an int! This is unsafe.

� C is the poster child for unsafe languages...

7

More lack of type safety in C

int main(int argc, char** argv) {
int a1[1] = {42}; // two 1-element arrays
int a2[1] = {78};
a2[1] = 999; // out of bounds!
printf("%d\n", a1[0]); // 999 !!

}

� C does not check array bounds. If you go past the end of

the array, you write into the next piece of memory.

– In this case, that memory happens to refer to a1...

– can lead to corrupt data elsewhere or crashes ("segfaults")

– many security bugs, viruses, etc. are from OS/app C code that

mistakenly goes past the end of an array on certain input

8

Parametric polymorphism

• What are the types of hd and tl? (and length?)

- hd;
val it = fn : 'a list -> 'a

- tl;
val it = fn : 'a list -> 'a list

• parametric polymorphism: ability of a function to handle

values identically without depending on their type

� language is more expressive; still handles types properly

� similar to generics in Java (e.g. ArrayList<String>)

� Does parametric polymorphism conflict with type safety?

9

More about polymorphism

• Some functions have unbounded or generalized types:

- fun identity(x) = x;
val identity = fn : 'a -> 'a

• Those types can become bounded on a particular call:

- fun foo(x) = if x then identity else abs;

� What is the type of foo?

• Some operators destroy/reduce a value's polymorphism:

� yes: + - ~ * / div mod < <= >= > andalso orelse
not ^ ord chr real str floor ceil round trunc

� no: :: @ hd tl nil [] = <> #n(tuple)

10

Equality types (5.3)

• equality type: One where two of its values can be directly

tested to see whether they are "equal" to each other.

• in ML, equality types are ones that allow =, <> operators

� int, bool, char, string

� any tuple, list, or record containing only the above

• the following are not equality types:

� real

� functions

� any tuple, list, or record containing the above

11

Generalized equality types

- fun identity(x) = x;
val identity = fn : 'a -> 'a

- fun switch(x, y) = (y, x);
val switch = fn : 'a * 'b -> 'b * 'a

• ML uses ' (e.g. 'a) for any general type

• ML uses '' (e.g. ''a) for any general equality type

� what is the type of = and <> ?

12

The 'polyEqual' warning

- fun len(lst) =
= if lst = [] then 0
= else 1 + len(tl(lst));
stdIn:5.19 Warning: calling polyEqual

val len = fn : ''a list -> int

• ML warns us when we use = or <> on a general type.

� It might be a logic error on our part (though not usually).

� It is slightly slow for ML to do = or <> on general types,

because it must store info about the type at runtime.

– (Really they should have disabled this warning by default.)

sml -Ccontrol.poly-eq-warn=false

13

Avoiding polyEqual

- fun len([]) = 0
= | len(first::rest) = 1 + len(rest);
val len = fn : 'a list -> int

• Sometimes the = or <> test can be avoided.

� for lists, the null(lst) function tests for [] without =

• Sometimes equality tests can't be avoided (it's okay):

fun contains([], _) = false

| contains(first::rest, value) = first = value

orelse contains(rest, value);

14

Defining a type synonym

type name = typeExpression;

• A named alias for another type or combination of types

• Examples:

� type fourInts = int * int * int * int;
� type transcript = real list;

• Your new type can be used elsewhere in the code:

� fun f(x:fourInts) = let (a,b,c,d) = x in ...

15

Parameterized type synonym

type (params) name = typeExpression;

• Your synonym can be generalized to support many types

• Example:

� type ('a, 'b) mapping = ('a * 'b) list;

• Supply the types to use with the parameterized type:

� val words = [("the", 25), ("it", 12)]
: (string, int) mapping;

16

Creating new types of data

datatype name = value | value | ... | value;

• a new type that contains only a fixed set of values

� analogous to the enum in Java/C

• Examples:

� datatype CardSuit = Clubs | Diamonds
| Hearts | Spades;

� datatype Color = Red | Green | Blue;

� datatype Gender = Male | Female;

17

Working with datatypes

• You can process each value of a type using patterns:

- fun rgb(Red) = (255, 0, 0)
| rgb(Green) = (0, 255, 0)
| rgb(Blue) = (0, 0, 255);

val rgb = fn : Color -> int * int * int

• Patterns here are just syntactic sugar for another

fundamental ML construct called a case expression.

18

Case expressions

case expression of
pattern1 => expression1

| pattern2 => expression2
...

| patternN => expressionN

• evaluates expression and fits it to one of the patterns

� the overall case evaluates to the match for that pattern

• a bit like the switch statement in Java, with expressions

19

Case examples

- fun rgb(c) =
case c of

Red => (255, 0, 0)
| Green => (0, 255, 0)
| Blue => (0, 0, 255);

val rgb = fn : Color -> int * int * int

fun fib(n) = (* inefficient *)
case n of 1 => 1

| 2 => 1
| x => fib(x-1) + fib(x-2);

20

Equivalent expressions

• bool is just a datatype:

� datatype bool = true | false;

• if-then-else is equivalent to a case expression:

if a then b else c case a of
true => b

| false => c

21

Datatype / case exercise

• Define a method haircutPrice that accepts an age and

gender as parameters and produces the price of a haircut

for a person of that age/gender.

� Kids' (under 10 yrs old) cuts are $10.00 for either gender.

� For adults, male cuts are $18.25, female cuts are $36.50.

• Solution:

fun haircutPrice(age, gend) =

if age < 10 then 10.00

else case gend of Male => 18.25

| Female => 36.50;

22

Type constructors

a TypeCtor is either: name of typeExpression

or: value

datatype name = TypeCtor | TypeCtor ...

| TypeCtor;

• datatypes don't have to be just fixed values!

� they can also be defined via "type constructors" that

accept additional information

� patterns can be matched against each type constructor

23

Type constructor example

(* Coffee : type, caffeinated?
Wine : label, year
Beer : brewery name
Water : needs no parameters *)

datatype Beverage =
Water

| Coffee of string * bool
| Wine of string * int
| Beer of string;

- val myDrink = Wine("Franzia", 2009);
val myDrink = Wine ("Franzia",2009) : Beverage

- val yourDrink = Water;
val yourDrink = Water : Beverage

24

Patterns to match type ctors

(* Produces cafe's price for the given drink. *)
fun price(Water) = 1.50
| price(Coffee(type, caf)) = if caf then 3.00

else 3.50
| price(Wine(label, year)) = if year < 2009

then 30.0 else 10.0
| price(Beer(_)) = 4.00;

• functions that process datatypes use patterns

� pattern gives names to each part of the type constructor,

so that you can examine each one and respond accordingly

