
CSE 341

Lecture 7

anonymous functions; composition of functions

Ullman 5.1.3, 5.6

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Review: operator --

• Define an operator min -- max that will produce a list of

the integers in the range [min, max] inclusive.

� Example: 2--7 produces [2,3,4,5,6,7]

(We'll use -- as a helper for several later examples.)

• Solution:

infix --;

fun min -- max =

if min > max then []

else min :: ((min+1) -- max);

3

Anonymous functions (5.1.3)

fn parameter(s) => expression

• Example:

- map(fn x => x+1, [2, 0, 9, ~3]);

val it = [3,1,10,~2] : int list

• allows you to define a function without giving it a name

• useful with higher-order functions e.g. map/filter/reduce

• fun name... is the same as val name = fn...

4

Pascal's triangle exercise

• Pascal's triangle is a sequence of numbers of the form:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

• Define a function triangle that takes an integer n and

produces a list of the first n levels of the triangle.

� triangle(6) produces [[1], [1,1], [1,2,1],

[1,3,3,1], [1,4,6,4,1], [1,5,10,10,5,1]]

5

Pattern of numbers

• The values at the two ends of a row are always 1.

• An interior number is the sum of the two values above it:

� value at (row n, col k) = value at (n-1, k-1) + value at (n-1, k)

row col 1 2 3 4 5 6
1 1 1
2 1 1 1 1
3 1 2 1 1 2 1
4 1 3 3 1 1 3 3 1
5 1 4 6 4 1 1 4 6 4 1
6 1 5 10 10 5 1 1 5 10 10 5 1

� Can we turn these observations into a helping function?

6

Binomial coefficients

• the numbers in Pascal's triangle also relate to binomial

coefficients, or "n choose k" combinations:

• Use the following function as a helper:
(* returns n choose k *)

fun combin(n, k) =

if k = 0 orelse k = n then 1

else if k = 1 then n

else combin(n - 1, k - 1) + combin(n - 1, k);

7

The triangle function

• The overall triangle consists of rows of the form:

� [r choose 1, r choose 2, ..., r choose r]

• To produce a triangle of n levels:

� for each number r in the range 1 through n,

– for each number k in the range 1 through r,

– compute (r choose k). put all such values together into a list.

8

triangle solution

(* Returns level r of Pascal's triangle (1-based). *)

fun makeRow(r) =

let fun rChoose(k) => combin(r, k)

in map(rChoose, 1--r)

end;

(* Returns the first n levels of Pascal's triangle. *)

fun triangle(n) = map(makeRow, 1--n);

(* Version that uses anonymous functions *)

fun triangle(n) =

map(fn(r) => map(fn(k) => combin(r, k), 1--r), 1--n);

9

Exercise

• Write an ML expression that produces the square roots of

the integers from 1-100, rounded to the nearest integer.

� Write it as a one-line expression without let or fun.

[1,1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,

6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9

,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10] : int list

• Solution:

map(fn(n) => round(Math.sqrt(real(n))), 1--100);

10

Composing functions (5.6)

• The preceding code is really just a combination

(composition) of other existing functions.

� round(Math.sqrt(real(n)))

• Consider the following function. How could we use it?

(* Produces a new function H that calls G and F. *)

fun compose(F, G) =

let fun H(x) = F(G(x))

in H

end;

11

Composition operator, o (5.6.2)

function1 o function2

• the o operator is similar to our compose function

� val H = F o G;

produces a new function H such that H(x) = F(G(x))

• function composition is so important that most functional

languages include a convenient syntax for it

12

Composition exercise

• Write an ML expression that produces the square roots of

the integers from 1-100, rounded to the nearest integer.

� Use function composition with the o operator.

• Solution:

map(round o Math.sqrt o real, 1--100);

13

Composition exercise

• Define a function squareWhole that takes a list of reals

and produces the squares of their integer portions.

� (a one-liner using composition and higher-order functions)

� Example:

squareWhole([3.4, 1.7, 5.8, 10.6]) produces

[9.0,1.0,25.0,100.0]

• Solution:

fun squareWhole(lst) =

map(real o (fn(x) => x*x) o trunc, lst);

