
CSE 341

Lecture 6

exceptions; 

higher order functions; map, filter, reduce

Ullman 5.2, 5.4

slides created by Marty Stepp

http://www.cs.washington.edu/341/



2

Exceptions (5.2)

• exception: An object representing an error.

� can be generated ("raised") and repaired ("handled")

� an elegant way to provide non-local error recovery

• exceptions can be used in ML for many reasons:

� to bail out of a function whose preconditions are violated

� "partial" functions that don't map entire domain to range

� when a function doesn't know how to handle a particular 

problem (e.g., file not found; empty list; etc.)

� ...



3

Raising an exception

(* defining an exception type *)
exception name [of parameterTypes];

(* raising ("throwing") an exception *)
raise exceptionName (parameterValues);

• ML includes many pre-defined exception types, but you 

can (and often should) define your own



4

Raising exception example

exception Negative;

(* Computes n!, or 1*2*3*...*n-1*n. *)
fun factorial(0) = 1
|   factorial(n) =

if n < 0 then raise Negative
else n * factorial(n - 1);

- factorial(~4);
uncaught exception Negative

raised at: stdIn:6.29-6.37



5

Exception with parameter

exception Negative of string;

(* Computes n!, or 1*2*3*...*n-1*n. *)
fun factorial(0) = 1
|   factorial(n) =

if n < 0
then raise Negative("Can't pass a    ¬

negative number for n!")
else n * factorial(n - 1);



6

Handling an exception (5.2.3)

expression1 handle exception => expression2

• handling an exception stops it from going all the way up 

the call stack and stopping the program with an error

• the above code tries to compute expression1, but ...

� if that computation raises an exception of type exception, 

then expression1 will be replaced by expression2.

� The  exception => expression2 syntax is an example 

of a match, which we'll see more later.



7

Handling exception example

(* Returns 2 * n!.  A silly function.
If factorial fails, produces 0. *)

fun example(n) =
2 * factorial(n) handle Negative => 0;

- example(4);
val it = 48 : int

- example(~3);
val it = 0 : int



8

Operators as functions

• Every operator in ML is really a function defined with op:

- op +;
val it = fn : int * int -> int

- op +(2, 5);
val it = 7 : int

- op *(op +(2, 5), op ~(4));   (* (2+5)*~4 *)
val it = ~28 : int

- op ^("hello", "world");
val it = "helloworld" : string



9

Defining an operator

(* if defining a binary operator *)
infix operator;

fun op operator = expression;

• The operator can call itself recursively in its own 

expression as:  op operator(parameters)



10

Defining operator example

(* Exponentiation operator, computes x^y.
Not tail-recursive.  Fails for y<0. *)

infix ^^;
fun op ^^(x, 0) = 1
|   op ^^(x, y) = x * op ^^(x, y - 1);

- 2 ^^ 10;
val it = 1024 : int

• Exercise: Define an operator -- such that a--b will 
create a list of the integers [a, a+1, a+2, ..., b-1, b].



11

Defining operator solution

(* x--y Produces [x,x+1,...,y-1,y].
Not tail-recursive. *)

infix --;
fun op --(x, y) =

if x > y then []
else x :: op --(x+1, y);

(* alternate version *)
fun x--y =

if x > y then []
else x :: (x+1)--y;



12

Functions as values

• in ML, a variable is just a symbol in the environment that 

maps from a name to a value

• a function is actually just a symbol as well; it maps from a 

function name to a piece of code to execute

• you can assign a variable (val) to refer to a function:

- val xyz = factorial;
val xyz = fn : int -> int

- xyz(5);
val it = 120 : int



13

Functions as parameters

• Since functions are values,

we can pass them as parameters to other functions!

- fun callAndAdd1(f) = f(4) + 1;
val callAndAdd1 = fn : (int -> int) -> int

- callAndAdd1(factorial);
val it = 25 : int



14

Higher-order functions (5.4)

• higher-order function: A function that accepts another 

function as input and/or produces a function as output.

� callAndAdd1 is higher-order, as is apply below.

- fun apply(f, x) = f(x);
val apply = fn : ('a -> 'b) * 'a -> 'b

- apply(round, 3.54);
val it = 4 : int



15

Common higher-order functions

Many functional languages provide the following functions:

• map(F, list): Applies F to each element of the list [a, 

b, c, ...] and produces a new list [F(a), F(b), F(c), ...].

• filter(P, list): Applies a boolean function 

("predicate") P to each element, and produces a new list 

of every element k from the list where P(k) was true.

• reduce(F, list): Collapses list into a single value by 

applying F to pairs of elements.  F is assumed to accept 

two of list's values and produce a single value each time.



16

Implementing map

• ML includes map, but let's think about how it might be 

implemented by writing our own version.

- fun map(F, []) = []
|   map(F, first::rest) =

F(first) :: map(F, rest);
val map = fn : ('a -> 'b) * 'a list -> 'b list

- map(abs, [2, ~7, 19, ~1, ~95, 6]);
val it = [2,7,19,1,95,6] : int list



17

map exercise

• Use map to convert a list of ints into their square roots.

� Example: turn [4, 9, 1, 2, 16] into

[2.0, 3.0, 1.0, 1.41421356237, 4.0]

• Solution:

- val L = [4, 9, 1, 2, 16];

- map(Math.sqrt, map(real, L));



18

Implementing filter

• ML includes List.filter, but let's think about how it 

might be implemented by writing our own version.

- fun filter(P, []) = []
|   filter(P, first::rest) =
if P(first) then first :: filter(P, rest)
else filter(P, rest);

val map = fn : ('a -> 'b) * 'a list -> 'b list

- fun positive(x) = x > 0;
- filter(positive, [2, ~7, 19, ~1, ~95, 6]);
val it = [2,19,6] : int list



19

Filter exercise

• Define a function removeAll that accepts a list L and a 

value k and produces a new list containing L's elements 

with all occurrences of k removed.      (Use filter.)

� Example: removeAll([2, 9, 2, 2, 7, ~8, 2, 4], 2)
produces [9, 7, ~8, 4]

• Solution:

fun removeAll(L, k) =
let fun equalsK(x) = x = k
in  filter(equalsK, L)
end;



20

Implementing reduce

• ML includes List.foldl and List.foldr, but let's 

think about how reduce might be implemented by 

writing our own version:

exception EmptyList;
fun reduce(F, []) = raise EmptyList
|   reduce(F, [value]) = value
|   reduce(F, first::rest) =

F(first, reduce(F, rest));
val reduce = fn : ('a * 'a -> 'a) * 'a list -> 'a



21

reduce exercises

• Use reduce to compute the sum and product of a list.

val L = [2, 5, ~1, 8];
reduce(op +, L);

• Use reduce to square the elements of a list.

� Example: turn [2, 5, ~1, 8] into [4, 25, 1, 64]

fun square(x) = x*x;
reduce(square, L);


