
CSE 341

Lecture 4

merge sort; basic efficiency issues

Ullman 3.3 - 3.4

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Exercise

• Write a function mergeSort that accepts a list and uses

the merge sort algorithm to produce a list with the same

elements in non-decreasing order.

� mergeSort([5,2,8,4,9,6]) produces [2,4,5,6,8,9]

(a tricky recursive algorithm for us to practice...)

3

Merge sort

• merge sort: Repeatedly divides data in half, sorts each

half, and combines the sorted halves into a sorted whole.

The algorithm:

� Divide the list into two roughly equal halves.

� Sort the left half.

� Sort the right half.

� Merge the two sorted halves into one sorted list.

� Often implemented recursively.

� An example of a "divide and conquer" algorithm.

– Invented by John von Neumann in 1945

4

Merge sort example

12

2

-4

3

58

4

7

5

31

6

42

7

1822value

10index

12 -41822

1822

22 18

2218

merge

split
-412

12 -4

12-4

merge

split

split

18 2212-4

31 42758

758

58 7

587

merge

split
4231

31 42

4231

merge

split

split

42 58317

18 22 31 4212 587-4

split

merge merge

merge

5

Merging sorted halves

6

Merge halves code (Java)

// Merges the left/right elements into a sorted result.

// Precondition: left/right are sorted

public static void merge(int[] result, int[] left, int[] right) {
int i1 = 0; // index into left array
int i2 = 0; // index into right array

for (int i = 0; i < result.length; i++) {
if (i2 >= right.length ||

(i1 < left.length && left[i1] <= right[i2])) {
result[i] = left[i1]; // take from left
i1++;

} else {
result[i] = right[i2]; // take from right
i2++;

}
}

}

7

Merge sort code 2

// Rearranges the elements of a into sorted order using

// the merge sort algorithm (recursive).

public static void mergeSort(int[] a) {
if (a.length >= 2) {

// split array into two halves

int[] left = Arrays.copyOfRange(a, 0, a.length/2);
int[] right = Arrays.copyOfRange(a, a.length/2, a.length);

// sort the two halves

mergeSort(left);

mergeSort(right);

// merge the sorted halves into a sorted whole

merge(a, left, right);
}

}

8

Suggested helpers

• Write a function split that accepts a list and produces a

tuple of two lists representing its even and odd indexes.

� split([12, ~3, 0, 19, 1]) produces

([12, 0, 1], [~3, 19])

• Write a function merge that accepts two sorted lists and

produces a new merged sorted list.

� merge([4, 9, 11], [~3, 2, 10]) produces

[~3, 2, 4, 9, 10, 11]

9

Helper solutions

(* Splits a list into 2 sublists of its even/odd indexes. *)
fun split([]) = ([], [])
| split([x]) = ([x], [])
| split(first :: second :: rest) =

let val (l1, l2) = split(rest)
in (first :: l1, second :: l2)
end;

(* Merges sorted L1 and L2 into a sorted whole. *)
fun merge([], L2) = L2
| merge(L1, []) = L1
| merge(L1 as first1 :: rest1, L2 as first2 :: rest2) =

if first1 < first2
then first1 :: merge(rest1, L2)
else first2 :: merge(L1, rest2);

10

Merge sort solution

(* Rearranges the elements of the given list to be in
non-decreasing order using the merge sort algorithm. *)

fun mergeSort([]) = []
| mergeSort([value]) = [value]
| mergeSort(lst) =

let
val (left, right) = split(lst)

in
merge(mergeSort(left), mergeSort(right))

end;

11

Efficiency exercise

• Write a function called reverse that accepts a list and

produces the same elements in the opposite order.

� reverse([6, 2, 9, 7]) produces [7,9,2,6]

• Write a function called range that accepts a maximum

integer value n and produces the list [1, 2, 3, ..., n-1, n].

Produce an empty list for all numbers less than 1.

� Example: range(5) produces [1,2,3,4,5]

12

Flawed solutions

• These solutions are correct; but they have a problem...

fun reverse([]) = []
| reverse(first :: rest) =

reverse(rest) @ [first];

fun range(0) = []
| range(n) = range(n - 1) @ [n];

13

Efficiency of the @ operator

val x = [2, 4, 7];
val y = [5, 3];
val a = 9 :: x;
val z = x @ y;

• The :: operator is fast: O(1)

� simply creates a link from the first element to front of right

• The @ operator is slow: O(n)

� must walk/copy the left list and then append the right one

� using @ in a recursive function n times : function is O(n2)

2x 4 7

5y 39a

2z 4 7

14

Fixing inefficient recursion

• How can we improve the inefficient range code?

fun range(0) = []
| range(n) = range(n - 1) @ [n];

� Hint: Replace @ with :: as much as possible.

15

Better solution

fun range(n) =
let

fun helper(min, max) =
if min = max then [min]
else min :: helper(min + 1, max)

in
helper(1, n)

end;

16

More about efficiency

• The fibonacci function we wrote previously is also

inefficient, for a different reason.

� It makes an exponential number of recursive calls.

� Example: fibonacci(5)
– fibonacci(4)

– fibonacci(3)
» fibonacci(2)
» fibonacci(1)

– fibonacci(2)

– fibonacci(3)
– fibonacci(2)
– fibonacci(1)

� How can we fix it to make fewer (O(n)) calls?

17

Iterative Fibonacci in Java

// Returns the nth Fibonacci number.
// Precondition: n >= 1
public static int fibonacci(int n) {

if (n == 1 || n == 2) {
return 1;

}
int curr = 1; // the 2 most recent Fibonacci numbers
int prev = 1;

// k stores what fib number we are on now
for (int k = 2; k < n; k++) {

int next = curr + prev; // advance to next
prev = curr; // Fibonacci number
curr = next;

}
return curr;

}

18

Efficient Fibonacci in ML

(* Returns the nth Fibonacci number.
Precondition: n >= 1 *)

fun fib(1) = 1
| fib(2) = 1
| fib(n) =

let
fun helper(k, prev, curr) =

if k = n then curr
else helper(k + 1, curr, prev + curr)

in
helper(2, 1, 1)

end;

