
CSE 341

Lecture 3

let expressions; pattern matching

Ullman 3.3 - 3.4

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

String and char (2.2, 2.4.5)

• ML's String structure has additional functions:

� String.size(string) (* length *)

� String.substring(string, start, length)

� String.sub(string, index) (* charAt *)

merges all strings from a list into oneconcat(string list)

converts an int ASCII value into a charchr(int)

converts a char into its int ASCII valueord(char)

combines a list of chars into a stringimplode(char list)

breaks a string into an array of charactersexplode(string)

descriptionfunction

3

The keyword let (3.4)

let
val name = expression

in
expression

end;

• binds a symbol to a function's "local environment"

� like declaring a local variable in Java

• the variable will be used only by the function

� recall that its value cannot change

• let expressions can appear anywhere an expression can

4

let example

(* The distance between points (x1,y1),(x2,y2). *)
fun dist(x1, y1, x2, y2) =

let
val dx = x2 - x1
val dy = y2 - y1

in
Math.sqrt(dx * dx + dy * dy)

end;

• useful when you will be computing a value that is:

� used multiple times, or

� used in a complex way by the overall function's expression.

5

Using let with functions

let
fun name = expression

in
expression

end;

• technically, any binding (function or variable) can be

made in a let-expression

• useful for writing "helper" functions

� subtasks required by a larger function

� recursive helpers when a function needs more parameters

6

Function let example

(* Least common multiple (LCM) of a and b. *)
fun lcm(a, b) =

let
fun gcd(x, y) =

if y = 0 then x
else gcd(y, x mod y)

in
a * b div gcd(a, b)

end;

• Exercise: Change the function convertNames from last

lecture to use a let helper function.

7

More about functions and let

a function declared inside a let expression:

• is part of the environment of the enclosing function

� can refer to any of the enclosing func.'s parameters/vars

• defines its own local sub-environment

� can declare its own let sub-expressions

� can use parameter names that collide with those of the

enclosing function, without ambiguity

8

Patterns (3.3)

ML bindings can contain patterns to match name(s) on
the left side of = with the value(s) on the right.

• basic pattern: one name on left (matches all of right)

� val point = (3, ~5);

• tuple pattern: tuple of names on left match parts on right

� val (x, y) = (3, ~5);

� val (p, (x2, y2)) = ((3, ~5), (4, 7));

• list pattern: list of names on left; same-size list on right

� val [a, b, c] = [8, 2, 6];

9

List patterns

• list pattern with :: matches a head element and tail list

� val first::rest = [10, 20, 30, 40];

� first stores 10; rest stores [20,30,40]

• You can break out as many elements as you like:

� val first::second::rest = [10, 20, 30, 40];

� first stores 10; second stores 20; rest stores [30,40]

• list patterns can contain :: but not @

10

Functions and patterns

fun name(pattern1) = expression1
| name(pattern2) = expression2
...
| name(patternN) = expressionN;

• describes the function's behavior as a series of cases,

each corresponding to a pattern of parameter values

� better than lots of if-then-else expressions

� avoids a lot of calls on hd, tl, and length on lists

� must be exhaustive (match all possible parameter values)

11

Function pattern example

fun factorial(0) = 1
| factorial(n) = n * factorial(n - 1);

• If a client calls factorial and passes 0, it matches the

first pattern (base case)

• if a client calls factorial and passes some other value,

it matches the second pattern (recursive case)

12

Exercises

• Write a function fibonacci that accepts an integer n

and produces the nth Fibonacci number, where the first

two are 1 and all others are the sum of the prior 2.

� fibonacci(6) produces 13

• Write a function evens that accepts a list and produces

the elements at even-numbered indexes (0, 2, 4, ...).

� evens([6, 19, 2, 7]) produces [6,2]

� evens([3, 0, 1, ~5, 8]) produces [3,1,8]

(Use patterns in your solutions.)

13

Inexhaustive patterns

- fun evens([]) = []
= | evens(first::second::rest) = first::evens(rest);
val evens = fn : 'a list -> 'a list

- evens([6, 19, 2, 8, 5]);
uncaught exception Match [nonexhaustive match failure]
raised at: stdIn:9.58

• ML raises an exception if a call doesn't match any pattern

� this happens when the recursion reaches evens([5])

� we must add a third pattern to match a one-element list

14

Wildcard patterns (3.3.3)

• anonymous pattern _ matches any single parameter

fun contains([], _) = false
| contains(first::rest, value) = first = value

orelse contains(rest, value);

• What, if any, is the difference between these?

� fun f1() = 42;

� fun f2(_) = 42;

15

The as keyword (3.3.2)

name as pattern

(* Removes any 0s from front of a list. *)

fun noLeadZeros([]) = []

| noLeadZeros(lst as first :: rest) =

if first = 0 then noLeadZeros(rest)

else lst;

• if you like, you can name the entire parameter and also

break its contents apart using a pattern

� saves us from having to write, else first :: rest;

