
CSE 341

Lecture 2

lists and tuples; more functions; mutable state

Ullman 2.4.1, 2.4.3; 3 - 3.2; 2.3

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Comments

(* comment text *)

(* Computes n!, or 1*2*3*...*n-1*n.

precondition: n >= 0 *)

fun factorial(n) =

if n = 0 then 1

else n * factorial(n - 1);

3

Running an ML program (1.2)

• an ML program can be thought of as a series of bindings

between names (variables, functions, etc.) and values

• from your operating system's terminal / console:

sml filename.sml

� preferred; gives a cleaner environment

• running a program from within ML interpreter:

use "filename.sml";

� drawback: any previous definitions still exist

(a "dirty environment")

4

Lists (2.4.3)

[expr1, expr2, ..., exprN]

• list: contains 0 or more values of the same type

val lst = [42, ~7, 19];

val lst = [42,~7,19] : int list

• The empty list is written as [] or nil

• You do not access a list's elements by indexes. Instead:

hd(list) returns the list's first element

tl(list) returns the list of all elements except the first

– Does tl copy the list, or use a reference? Does it matter?

5

Concat and cons: growing lists

• concatenate two lists: list1 @ list2

[10, 20] @ [30, 40];

val it = [10,20,30,40] : int list "concat"

• attach an element onto a list: element :: list

10 :: [20, 30];

val it = [10,20,30] : int list "cons"

� How would we attach an element to the end of a list?

equivalent to [element] @ list

6

More about lists

• find out a list's length with the length function:

length(["ab","cd","e"]) → 3

• strings can be converted to/from lists

explode("CSE") → [#"C", #"S", #"E"]

implode([#"H", #"i"]) → "hi"

concat(["ab","cd","e"]) → "abcde"

• ML has a List structure with many other functions such

as List.find, List.rev, and List.partition

7

Exercise

• Define a function named sum that takes a list of integers

as a parameter and computes the sum of its elements. A

list that contains no elements has a sum of 0.

� example: sum([1, 7, ~2, 15]) should produce 21

• Define a function named last that takes a list of integers

as a parameter and produces the last element of the list.

You may assume that the list is non-empty.

� example: last([1, 7, ~2, 15]) should produce 15

8

Exercise solutions

fun sum(lst) =

if lst = [] then 0

else hd(lst) + sum(tl(lst));

fun last(lst) =

if length(lst) = 1 then hd(lst)

else last(tl(lst));

9

Parametric polymorphism

• What are the types of hd and tl? (and length?)

- hd;

val it = fn : 'a list -> 'a

- tl;

val it = fn : 'a list -> 'a list

• parametric polymorphism: ability of a function to handle

values identically without depending on their type

� language is more expressive; still handles types properly

� similar to generics in Java (e.g. ArrayList<String>)

� can we write a function using parametric polymorphism?

10

Tuples (2.4.1)

(expr1, expr2, ..., exprN)

• tuple: contains 1 or more values of any type

val t = (42, 19, 4.6, "hi");

val t = (42,19,4.6,"hi") : int * int * real * string

• You can access a tuple's elements by 1-based indexes:

#2(t);

val it = 19 : int

11

More about tuples

• The type of a tuple is written as its element types with *

� The type of (1, 2.7) is int * real

� What is the type of (true, ~1, 7) ?

• lists and tuples can be nested

[[4, 3], [~7], [55, 99, 1]]

(42, 19.6, ("hi", "bye", true), ~7, "ok")

12

Tuple as parameter list

• A tuple can be passed as a parameter list to a function:

- fun max(a, b) = if a > b then a else b;

val max = fn : int * int -> int

- val nums = (7, 24);

val nums = (7,24) : int * int

- max(nums);

val it = 24 : int

13

Exercise

• Define a function named convertNames that accepts a

list of ("first-name", "last-name") tuples and produces a

list of "last-name, first-name" strings. For the list:
val names = [("Hillary", "Clinton"),

("Barack", "Obama"),

("Joseph", "Biden")];

The call of convertNames(names); should produce:

["Clinton, Hillary", "Obama, Barack", "Biden, Joseph"];

14

Approaching a problem

• One strategy: think procedurally and write pseudo-code:

– create new result list = [].

– for each element e of list:
– convert e into "last, first" format.

– append e onto result list.

– return result list.

• How do we express these computations recursively?

• Can we simplify the problem? Can we break it down?

15

Helper functions

• Write a helper function to solve part of the problem:

– create new result list = [].

– for each element e of list:
– convert e into "last, first" format.

– append e onto result list.

– return result list.

fun lastFirst(name : string*string) =

#2(name) ^ ", " ^ #1(name);

or, expand the tuple in the definition:

fun lastFirst(first, last) =

last ^ ", " ^ first;

16

Thinking recursively

• Useful questions to ask:

� What is the base case?

� How would I handle a case that is "one-above" the base?

(That is, one iteration/call away from being a base case?)

� How do I target a small part of the problem and solve it?

� What recursive call(s) will solve the rest of the problem?

17

Exercise solution

fun lastFirst(first, last) = last ^ ", " ^ first;

fun convertNames(lst) =

if lst = [] then []

else lastFirst(hd(lst)) ::

convertNames(tl(lst));

18

Mutable state

• mutable state: Ability for data to be modified after

creation / declaration.

� Example:

int x = 3;

...

x = 7;

• Mutable state is good, right? Do we ever not have it?

� constants (public static final ...)

� Strings (s.toLowerCase();)

� objects with only get methods, no set ("immutable")

3x

19

Why are Strings immutable?

• Why was Java designed with immutable strings?

public Employee(String name, ...) {
this.name = name;
.... // how could this code

} // be abused if Strings
// were mutable in Java?

public String getName() {
return name;

}

• J. Bloch, Effective Java, #15: "Minimize mutability."

• But what if I want a mutable string?

� StringBuilder, StringBuffer

20

Side effects

• Q: Is it always okay to replace the expression:

f(x) + f(x) with: 2 * f(x) ?

� maybe; f might do something besides return its value

– might produce output, e.g. System.out.println

– might increment a global counter, change a field value, etc.

• side effect: When a function, in addition to producing a

value, modifies state or has an external interaction.
� referential transparency: if call can always be replaced with result value

� idempotent: if it always returns the same result for the same input

21

Minimizing side effects

• ML (like many func.langs.) tries to minimize side effects

� (almost) everything is immutable

� variables' values cannot be changed (only re-defined)

� functions' behavior depends only on their inputs

• Benefits of this philosophy?

� the compiler/interpreter can heavily optimize the code

� much easier to understand/predict behavior of code;
code can be more thoroughly verified for correctness

� robust; hard for one chunk of code to damage another

� lack of side effects reduces dependency between code

– allows code to be more easily parallelized

22

Sharing

val x = [2, 4];
val y = [5, 3, 0];
val z = x @ y;

• Does z have a copy of y? Or refer to the same list?

� in Java: it's important to know what is shared

– if somebody changes z, it might change x or y, too

� in ML: doesn't matter; data is immutable

