
CSE 341

Lecture 1

Programming Languages; Intro to ML

Reading: Ullman 1.1; 2; 3 - 3.2

slides created by Marty Stepp

http://www.cs.washington.edu/341/

2

Programming languages

• programming language: A system of communication

designed to express computations to be performed,

presumably by a computer.

� syntax, semantics, type system

� libraries, specifications, implementations

� idioms (how is the language typically used?)

� user base, references

• Why learn general features vs. specific languages?

• What does learning, for example, ML teach us about Java

(or about languages in general)?

3

Programming language timeline

• 1951 - Regional Assembly Lang
• 1952 - Autocode
• 1954 - FORTRAN
• 1958 - ALGOL
• 1958 - LISP
• 1959 - COBOL
• 1960 - ALGOL 60
• 1962 - APL
• 1964 - BASIC
• 1964 - PL/I
• 1970 - Pascal
• 1972 - C
• 1972 - Smalltalk
• 1972 - Prolog
• 1973 - ML

• 1975 - Scheme
• 1978 - SQL
• 1980 - C++

• 1983 - Objective-C
• 1983 - Ada
• 1986 - Erlang
• 1987 - Perl
• 1990 - Haskell
• 1991 - Python
• 1991 - Visual Basic
• 1993 - Ruby
• 1993 - Lua
• 1995 - Java
• 1995 - JavaScript

• 1995 - PHP
• 1999 - D
• 2001 - C#
• 2002 - F#
• 2003 - Scala
• 2007 - Clojure, Groovy
• 2009 - Go

http://en.wikipedia.org/wiki/History_of_programming_languages

4

Another timeline

CLP(R)Prologlogical

Python,

Ruby, PHP,

JavaScript

PerlBASICscripting

C#JavaAda, C++Pascal, C,

Smalltalk

Algolimperative/

procedural

F#HaskellErlangML, SchemeLispfunctional

VBSQLDBMSesCobolbusiness

MatlabFortranscientific

2000s1990s1980s1970s1960scategory

5

Functional programming

• imperative/procedural programming: views a program

as a sequence of commands or statements

• functional programming: views a program as a sequence

of functions that call each other as expressions

� seen by some as an unintuitive or esoteric style

� but many of its features are "assimilated" by other langs

– functional constructs in F#, C#, .NET 3.0

– closures, lambdas, generics, garbage collection in Java

– MapReduce algorithm at Google

6

ML

• ML (meta-language): A general-purpose functional

programming language created in 1973 by Robin Milner

et. al. from University of Edinburgh

� created for developing advanced "lambda calculus" proofs

� pioneered "statically typed" functional programming langs

� known for clean syntax, elegant type system and design

� criticized by some for being functionally "impure"

� good textbook and supporting materials

• dialects: SML, Caml/OCaml, LML, F# (Microsoft .NET)

7

Core features of ML

• functional

• heavily recursive

• higher-order functions

• static / strict type system

• rich abstract data types (ADTs)

• type inference

• polymorphic

• minimizing of side effects

� makes code easier to parallelize

• rules and pattern matching

• garbage collection

8

The ML interpreter

• waits for you to type expressions,

immediately evaluates them,

and displays the result

• a read-evaluate-print loop ("REPL")

• similar to Interactions pane of jGRASP, DrJava, etc.

• useful for learning and practicing ML syntax, types

9

Using the interpreter

• type an expression at the - prompt; its result appears:

- 1 + 2 + 3; ← don't forget the semicolon!

val it = 6 : int

• special variable it stores the result of the last expression

- it * 2;

val it = 12 : int

• hotkeys: Press ↑ for previous command; ^C to abort;
� ^Z (Unix/Mac) or ^D (Windows) to quit interpreter

10

Basic types (2.1)

name description Java Example

• int integer int 3

• real real number double 3.14

• string multi-char. text String "hello"

• char single character char #"Q"

• bool logical true/false boolean true

other types

• unit, tuple, list, function, record

11

Operators

• same as Java

� + - * / basic math int*int, real*real

• different

� ~ negation int, real

� div integer division int*int

� mod integer remainder int*int

� ^ concatenation string*string

12

int and real

• cannot mix types

� 1 + 2.3 is illegal! (why?)

• but you can explicitly convert between the two types

� real(int) converts int to real

� round(real) rounds a real to the nearest int

� ceil(real) rounds a real UP to an int

� floor(real) rounds a real DOWN to an int

� trunc(real) throws away decimal portion

� real(1) + 2.3 is okay

13

Declaring a variable

val name: type = expression;

val name = expression;

• Example:

val pi: real = 3.14159;

• You may omit the variable's type; it will be inferred

val gpa = (3.6 + 2.9 + 3.1) / 3.0;
val firstName = "Daisy";

� identifiers: ML uses very similar rules to Java

� everything in ML (variables, functions, objects) has a type

14

The ML "environment"

• environment: view of all identifiers defined at a given point

� defining a variable adds an identifier to the environment

� re-defining a variable replaces older definition (see 2.3.4)

– different than assigning a variable a new value (seen later)

3.2gpa

(function ...)floor

......

valueidentifier

(function ...)round

3.14159pi

15

The if-then-else statement

if booleanExpr then expr2 else expr3

• Example:

- val s = if 7 > 10 then "big" else "small";

val s = "small" : string

• Java's if/else chooses between two (blocks of) statements

• ML's chooses between two expressions

� more like the ?: operator in Java

• there is no if-then; why not?

16

Logical operators

• similar to Java

� < <= >= > relational ops int*int, real*real,

string*string,

char*char

• different

� = equality, int*int, char*char,

<> inequality string*string,

bool*bool

� andalso AND && bool*bool

� orelse OR || bool*bool

17

Functions (3.1)

fun name(parameters) = expression;

• Example (typed into the interpreter):

- fun squared(x: int) = x * x;

val squared = fn : int -> int

• Many times parameter types can be omitted:

- fun squared(x) = x * x;

� ML will infer the proper parameter type to use

18

More about functions

• In ML (and other functional languages), a function does

not consist of a block of statements.

• Instead, it consists of an expression.

� maps a domain of parameter inputs to a range of results

� closer to the mathematical notion of a function

• Exercise: Write a function absval that produces the

absolute value of a real number.

fun absval(n) = if n >= 0 then n else ~n;

� (ML already includes an abs function.)

19

Recursion (3.2)

• functional languages in general do NOT have loops!

• repetition is instead achieved by recursion

• How would we write a factorial function in ML?

public static int factorial(int n) { // Java
int result = 1;
for (int i = 1; i <= n; i++) {

result *= i;
}
return result;

}

20

Factorial function

fun factorial(n) =

if n = 0 then 1

else n * factorial(n - 1);

� has infinite recursion when you pass it a negative number

(we'll fix this later)

21

Exercise

• Write a function named pay that reports a TA's pay

based on an integer for the number of hours worked.

� $8.50 for each of the first 10 hours worked

� $12.75 for each additional hour worked

� example: pay(13) should produce 123.25

• Solution:

fun pay(hours) =

if hours <= 10 then 8.50 * real(hours)

else 85.00 + 12.75 * real(hours - 10);

