
CSE 341, Autumn 2010
Assignment #2 - ML: RSA Encryption (100 points)

Due: Thursday, October 14, 2010, 11:30 PM

This assignment uses the basic building blocks of ML, along with patterns and the let construct. You are allowed to use
any constructs from Chapters 1-3 of the Ullman text. Place all of your functions and variables into a file called rsa.sml
and submit it from the class web page. Those doing the bonus should also submit a second file called rsa-big.sml.

Background about RSA Encryption:
In this assignment we will explore an algorithm known as RSA encryption, named for the three mathematicians who first
described it, Rivest, Shamir, and Adleman. You don't have to understand all of the details of the algorithm to do the
assignment, but you might want to read about it online first:

• http://en.wikipedia.org/wiki/RSA
• http://mathworld.wolfram.com/RSAEncryption.html

Encryption is the process of transforming plaintext information using an algorithm into an encoded form called ciphertext
so that it can be read only by its intended recipients. One quality of a good encryption algorithm is that even if an attacker
intercepts the ciphertext and knows what algorithm was used to encrypt it, he/she still cannot decode the message. The
intended recipient knows a secret value called a key that is fed into the algorithm to decode the message.

Keys: RSA uses a pair of keys: a public key to encrypt messages, known to both the sender and recipient (and potentially
also known to the attacker); and another private key to decrypt messages, known only to the intended recipient(s).
Suppose Alice wants to send a message to Bob. They choose their keys in the following way:

• Choose two random unequal large prime numbers; call them p and q. Compute their product, n = p · q.

• Choose another random large integer e (for "encryption") such that 1 < e < (p - 1)(q - 1), where e and (p - 1)(q - 1)
are relatively prime (share no factors with each other). Alice's public key for Bob will be the two numbers (n, e).

• Find another integer d (for "decryption") such that d · e ≡ 1 mod (p - 1)(q - 1). In other words, find some integer
d such that e · d - 1 is divisible by (p - 1)(q - 1). Bob's private key will be the number (d).

• Once the keys are chosen, Alice tells her public key (n, e) to Bob. Private key d is kept secret.

Encrypt: Alice wants to send a message M to Bob. M is a long string. The message is encrypted and sent as follows:

• M is converted into a large integer m such that 0 < m < n , generally by combining M's ASCII character values.

• The plaintext integer m is encrypted into a ciphertext integer c by applying the following formula
(recall that n and e are the components of Alice's known public key for Bob):

c = me mod n

• Ciphertext integer c is sent to Bob.

Decrypt: Bob receives ciphertext integer message c and wants to decrypt and read it.

• Bob uses his secret private key value d to convert c back into its original integer form m using the formula:

◦ m = cd mod n

• Now that Bob has m, it can be converted back into a string by applying the reverse conversion process that was
used to turn M into m (by breaking apart the integer into its ASCII values and interpreting these as characters).

It is believed that the encryption can't be broken unless the attacker can efficiently factor n. For this reason, very large
values of n are chosen so that it would take an impractically long time to do the factoring. In our assignment, it wouldn't
be very difficult to break the encryption because we will use relatively small values of n.

1 of 5

http://en.wikipedia.org/wiki/RSA
http://mathworld.wolfram.com/RSAEncryption.html

Our Implementation of the RSA Algorithm (Functions to Implement):
The following sections describe our implementation of the RSA algorithm for this assignment. You are not yet allowed to
use higher order functions (functions that take other functions as arguments, like the map function), and you should not
use the built-in list function called rev even though it is briefly mentioned in Chapter 3. You can use the built-in length
function for lists, but do not use other list operations not described in Ullman Ch. 1-3.

You are expected to use good programming style, such as naming, indentation, and avoiding redundancy when possible.
You should also place a descriptive comment on each function, including any preconditions assumed by the function.

As always, if the solution to a previous problem is useful in helping you solve a later problem, you should call the earlier
function from the later function. You are once again allowed to define "helper" functions to solve these problems and
you can include any testing code you develop (although it should be labeled as such). All helper functions should be
defined with a let construct so that they are not part of the top-level bindings. Favor the use of patterns rather than if-
then-else statements to distinguish between base and recursive cases.

(The pack, unpack, and modPow functions are worth the majority of the points for this assignment.)

Part A: String ↔ Integer Conversion

RSA encryption involves computing with very large integers. This requires special code to perform the math more
efficiently. We need functions to convert between strings and sequences of integers representing the ASCII ("ordinal")
values of each character in the string. We will turn each character into its ordinal using the built-in ord function, and we
will convert it back to a character using the built-in chr function. We will use the built-in implode and explode
functions to convert between string values and character lists. To keep the math simpler, we'll restrict ourselves to ASCII
characters that have a range of 0 to 127 and we'll even assume that we have no characters with ordinal value 0.

1. stringToInts

val stringToInts = fn : string -> int list

Define a function called stringToInts that takes a string s as an argument and that produces a list of integers that
represent the ordinal values (ASCII codes) of the sequence of characters in s. For example, the call of
stringToInts("hello") produces [104,101,108,108,111].

2. intsToString

val intsToString = fn : int list -> string

Define a function called intsToString that is the inverse of stringToInts, taking a list of ordinal values as an
argument and returning the corresponding string.
For example, the call of intsToString([104, 101, 108, 108, 111]) produces "hello".

(continued on next page)

2 of 5

Part B: Packing and Unpacking

Being able to convert a string into a list of ASCII integers is a good start, but we have to treat the entire message M as a
single very large integer m. Because of limitations on the range of values that can be stored by ML's int type, we can't
actually pack all of the integers together into a single value. But we can pack small groups of integers together into larger
integers and then encrypt/decrypt each integer individually using the same public/private key values.

We need the ability to combine small groups of characters together, where each group joins to form a larger integer that
we'll encrypt and later decrypt. We will refer to this task as packing and unpacking in the rest of this document.

For example, suppose you were dealing with numbers between 1 and 99 and you want to "pack" several of them together.
If you want to pack together the numbers [38, 3, 97], you could turn this into the integer 380397 by computing:

(38 · 1002) + (3 · 1001) + (97 · 1000)
380000 + 0300 + 97

Given the integer 380397 and knowing that we used 100 for packing, we could undo this to get the original sequence.

You are going to write this in a general way as a function called pack that takes a list of integers to pack along with the
number of integers to pack together and the base to use.

3. pack

val pack = fn : int list * int * int -> int list

Define a function called pack that takes three arguments: a list of integers lst, a number k for the maximum number of
integers to pack, and a base b to use for packing. The function produces the list obtained by combining integers in the
given base. In particular, consecutive sequences of k values from lst (a1, a2, …, am) are replaced with the single integer:

(a1 · bk-1) + (a2 · bk-2) + (a3 · bk-3) + … + (ak · b0)

If the list ends with a sequence of fewer than k values, those values should be combined using the same formula above as
if m were the length of the list instead. Your function should produce an empty list if passed an empty list.

For example, suppose that you have defined the following list:
val lst = [18, 3, 95, 48, 22, 39, 47, 12, 73, 15];

Below are examples of calls on pack, most using base 100 but packing a different number of numbers on each call:

• pack(lst, 2, 100) produces [1803,9548,2239,4712,7315]
• pack(lst, 3, 100) produces [180395,482239,471273,15]
• pack(lst, 4, 100) produces [18039548,22394712,7315]
• pack(lst, 3, 1000) produces [18003095,48022039,47012073,15]

Notice that there might be extra values at the end of the list that are only partially packed. For example, the last call above
has two stray values at the end ([73, 15]) that are converted into 7315 rather than 73150000. By packing the lists this
way and guaranteeing that 0 does not appear in the list to be packed, we can unpack the list using just the original base
(100 in the examples above) without knowing how many values were packed into each integer.

You may assume that k and b are both greater than 0 and that the numbers in the list are all greater than 0 and less than b.
In testing your program, be careful about which cases you test because you might get integer overflow.

4. unpack

val unpack = fn : int list * int -> int list

Define a function called unpack that is the inverse of the pack function. It takes two arguments: a list and a base. It
produces the list of integers obtained by expanding each integer using the given base. For example, the call of
unpack([180395, 482239, 471273, 15], 100) returns the same elements as in the lst shown previously.

Keep in mind that the original list did not contain any 0s, so your function should pull apart each integer as many times as
it can until it reaches 0. Use the div and mod operators to pull apart each integer into its constituent parts. Assume that
the list/base combination to unpack was generated by a legal call on pack with the same base.

3 of 5

Part C: RSA Encryption/Decryption Functions

Now we'll write a few functions for the actual encryption/decryption of our packed lists of integers, following the RSA
algorithm described previously. We have already gone ahead and decided the various integers and public/private keys to
start with, such as p, q, n, e, and d. Include the following variable bindings at the beginning of your file:

val p = 131; (* first chosen prime for RSA encryption *)
val q = 239; (* second prime chosen prime for RSA encryption *)
val n = p * q; (* used for modulus *)
val e = 1363; (* public key *)
val d = 227; (* private key *)

5. modPow

val modPow = fn : int * int * int -> int

Define a function called modPow that takes integers x, y and n as arguments and that efficiently computes (xy mod n).
You may assume that y ≥ 0 and n ≠ 0. Use your pow function from Homework 1 as a starting point.

This might seem like an easy function to implement. But you cannot just raise x to the y power and then mod it by n. The
reason is because xy might be very large and therefore might exceed the maximum integer value allowed by ML. But
remember that (xy mod n) must be between 0 and n-1, so the overall result is not too large to be represented as an ML
integer. It is possible to compute (xy mod n) without having to actually fully compute and store xy in our code. To do
this, you will need to make two modifications to your code:

• Include a special case for even powers that takes advantage of the fact that for even values of y,

xy = (xy/2)2 = (x2)y/2

For example, 38 = (34)2 = (32)4 , which also equals ((32)2)2 = 6561.

If you correctly add this optimization, your function makes at most roughly log2 n calls where n is the exponent.

• Make sure that your function computes the mod often. It would be highly inefficient to compute xy in its entirety
first and then to mod it by n only at the end of the computation. Instead, we want to break up the computation
into smaller computations that we mod by n. The principle we will apply is that, for any two integers x and y,

(x · y mod n) = ((x mod n) · (y mod n)) mod n

So in writing your modPow function, make sure that every time you multiply two values together that you mod the result
by n before using the result in any other multiplications. If we assume x is less than n, this will ensure that you never
compute a value larger than (n - 1)2, which will improve the efficiency and bound the range of the computation.

6. encrypt

val encrypt = fn : string * int * int * int * int -> int list

Write a function called encrypt that performs the overall RSA encryption algorithm we have described. The function
produces a list of encrypted integers based on five arguments: a string s, an integer key e, a modulus n, an integer per
(how many ordinals to pack into each encrypted integer), and an integer base. The function converts the string into a list
of ordinal values, packs the ordinal values with the given base and given number of ordinals to pack, and then encrypts
each integer x in the resulting list by replacing it with (xe mod n).

7. decrypt

val decrypt = fn : int list * int * int * int -> string

Write a function called decrypt that performs the overall RSA decryption algorithm we have described. The function
produces a decrypted string based on four arguments: a list of encrypted integers, an integer key d, an integer modulus n,
and an integer base. Decrypt each int x of the list by replacing it with (xd mod n), then unpack the resulting list using the
given base, and convert the list of ordinal values into a string.

4 of 5

Testing Your Code:
Once you have completed the previous functions, include the following variable bindings at the end of your file. If your
functions work, message and decoded should store the same value.

val message = "Twas brillig and the slithy toves did gyre and gimble";
val code = encrypt(message, e, n, 2, 128);
val decoded = decrypt(code, d, n, 128);

NOTE: Be advised that the per value of 3 does not work for packing and unpacking. Your code will produce strange
results even if it works for other values. You do not need to worry about this case or write any code to account for it.

Extra Credit (+1 point): RSA on Big Integers
Once you have verified that you have a working solution to the preceding problems, save a new copy of the file as
rsa-big.sml. In this second version we will use the IntInf structure that can handle large integers. Replace the
variable bindings at the beginning of the file with the following (including the command to open the IntInf structure):

open IntInf;
val p = toLarge(30000000000000000041); (* first prime *)
val q = toLarge(40000000000000000019); (* second prime *)
val n = p * q; (* modulus *)
val e = toLarge(1255949); (* public key *)
val d = toLarge(6688169662940135319969202571123509); (* private key *)

Before you can proceed, you will have to modify your definitions for stringToInts and intsToString. The ord and
chr functions deal with ordinary int values (what will be listed as ?.int after you open the IntInf structure). These
ordinary ints can be converted back and forth with big ints by calling the functions fromInt and toInt. The
fromInt function converts an ordinary int into a big int. The toInt function converts a big int into an ordinary int.
Once you have made the appropriate modifications, the function prototypes should look like this:

val stringToInts = fn : string -> int list
val intsToString = fn : int list -> string

Then replace the final two variable bindings with the following:
val code = encrypt(message, e, n, 16, 256);
val decoded = decrypt(code, d, n, 256);

The rest of the code should work without modification and should quickly encrypt the message, this time packing 16
characters into each encoded integer and allowing characters to have ordinal values as high as 255. The call on decrypt
should correctly decrypt the message.

Grading and Submission:
For reference, our solution is 50 lines long (52 including the extra credit), excluding blank lines and comments. You don't
need to match this number exactly or even come close to it; it's just a rough guideline.

Your program should not produce any syntax errors or warning messages when loaded into the ML interpreter, such as
"non-exhaustive match." You may lose points if you name your functions incorrectly, even if their behavior is correct.

Your code should work for both basic and advanced cases. Perform your own testing, and remember to test edge cases
such as negative numbers, empty lists, zeros, etc. unless the problem says you can assume that you won't encounter those.

You are expected to use good programming style, such as naming, indentation/spacing, and avoiding redundancy when
possible. Avoid long lines of over 100 characters in length; if you have such a line, split it into multiple lines.

Favor the use of patterns rather than if-then-else to distinguish between base and recursive cases. Favor the ::
operator to grow lists versus the @ operator (though the @ operator is sometimes necessary and is not forbidden entirely).

Place a descriptive comment heading at the top of your program along with a header on each function, including any
preconditions. Redundancy, such as recomputing a value unnecessarily or unneeded recursive cases, should be avoided.

5 of 5

	CSE 341, Autumn 2010
Assignment #2 - ML: RSA Encryption (100 points)
Due: Thursday, October 14, 2010, 11:30 PM

