
CSE 341 Sample Midterm #2

1. Expressions
For each ML expression in the left-hand column of the table below, indicate in the right-hand column its value. Be
sure to (e.g., 7.0 rather than 7 for a real; Strings in quotes e.g. "hello"; true or false for a bool). Assume
that the following value has been declared:

val words = ["live", "long", "and", "prosper"];

Expression Value

a) reduce(op *, 3--5)

b) mapx(hd o tl, [8--12, 4--9, 7--8, 8--10])

c) mapx(fn x => x mod 4, 1--7)

d) reduce(op +, mapx(fn x => x * x, 1--4))

e) filterx(fn x => x mod 4 > 1, 1--12)

f) mapx(fn x => "(" ^ x ^ ")", words)

g) reduce(op @, [1--3, 4--6, 5--7])

h) mapx(fn x => real(x) + 0.5, 1--4)

i) reduce(op +, mapx(size, words))

j) reduce(op *, mapx(fn x => 2 * x - 1, 2--4))

2. Types
For each ML expression in the left-hand column of the table below, indicate its type in the right-hand column
assuming the expression was added to the top-level environment. Assume that the following value has been declared:

val lst = [("foo", 3), ("bar", 2), ("baz", 19)];

Expression Type

a) lst

b) [tl(lst)]

c) (8, [["a", "b"], ["c", "d"]])

d) fn x => (hd(x) mod 3, tl(x))

e) real o hd o tl

3. Scope
What value does the variable answer store after executing the following code?

val y = 10;
val z = 20;
fun f(n, z) =
 let val x = 4 + y
 val y =
 let val x = 2
 val z = 3
 in n + x + z
 end;
 in x + y + n + z
 end;
val answer = f(40, 100);

1 of 7

CSE 341 Sample Midterm #2
4. Curried Functions

For this problem, in addition to being able to call the functions listed on the front page of the test, you may call the
function curry and the curried versions of map, filter and List.foldl/r) that we used in Homework #3, as well
as the following curried functions:

• fun curry f x y
Returns a curried version of the 2-argument function/operator f

• fun map2 f list
curried version of map written in lecture

• fun filter2 f list
curried version of filter written in lecture

• fun reduce2 f list
curried version of reduce written in lecture

As in homework #3, you may use only val definitions to solve the following problems. You may not use fun or fn
definitions to define a function.

a) Define a function sumPositives that takes a list of integers as an argument and that returns the sum of the
positive values in the list.

b) Define a function strip that takes a list of nonempty strings as an argument and that returns the list obtained by
stripping the last character from each string. For example:

• strip(["hello", "there", "old", "pal"]) should return ["hell","ther","ol","pa"]

2 of 7

CSE 341 Sample Midterm #2

5. Functions
Write a function powers that takes integer arguments n and m and that returns a list of the powers of m from 0 to n
inclusive. For example, powers(5, 2) should return [1,2,4,8,16,32] (which is 2^0, 2^1, ..., up to 2^5). Your
function must run in O(n) time, which means that it should require approximately n multiplications. You may assume
that n is not negative.

6. Functions
Write a function sortedChars that takes a string s as an argument and that returns the string composed of the sorted
lowercase version of the alphabetic characters from s. For example, sortedChars("Stuart Reges??") should
return "aeegrrssttu". This function would be useful for finding anagrams. For example, if you make the call
sortedChars("Sugar--Street"), you get the same result, indicating that these two strings are anagrams. In
writing your function, you may call Char.isAlpha to test whether a character is a letter and Char.toLower to
convert a letter to lowercase.

3 of 7

CSE 341 Sample Midterm #2

7. Functions
Write a function interleave that takes two lists as arguments and that returns the list obtained by combining
elements from the two lists in an alternating fashion. The first pair of values in the result should be the first values of
the two lists. The second pair of values in the result should be the second values in the two lists. And so on. In each
pair, the first value should be from the first list passed as a parameter and the second value should be from the second
list passed as a parameter (see first two example calls below). If one list has more values than the other, then those
values should be appended after the interleaved pairs (see last two example calls below).

• interleave([1, 2, 3], [10, 20, 30]) should return [1,10,2,20,3,30]
• interleave([10, 20, 30], [1, 2, 3]) should return [10,1,20,2,30,3]
• interleave([1, 2], [10, 20, 30, 40, 50]) should return [1,10,2,20,30,40,50]
• interleave([1, 2, 3, 4, 5], [10, 20]) should return [1,10,2,20,3,4,5]

8. Datatypes
Recall the IntTree data type we discussed in lecture for storing a binary tree of integers:

datatype IntTree = Empty | Node of int * IntTree * IntTree;

a) Write a function nodes that takes an IntTree as a parameter and returns the number of nodes in the tree.

b) Write a function leaves that takes an IntTree as a parameter and that returns a list of the data values stored in
leaf nodes of the tree. The leaf values should be listed from left to right (i.e., in the same order in which they would
be visited by any standard tree traversal).

4 of 7

CSE 341 Sample Midterm #2

9. Functions
a) Write a function cartesianProduct that takes two lists as arguments and that returns a list that contains each of
the ordered pairs (x, y) where x is an element of the first list and y is an element of the second list. The pairs can
appear in any order in the result. For example:

• cartesianProduct([1, 2, 3], ["a", "b"])
could return [(1,"a"),(1,"b"),(2,"a"),(2,"b"),(3,"a"),(3,"b")], or
could return [(1,"a"),(2,"a"),(3,"a"),(1,"b"),(2,"b"),(3,"b")]

These are only two possible answers because the pairs can be listed in any order in the result. If either list passed as a
parameter is empty, the result should be an empty list. Your function should run in O(m * n) time where m and n are
the lengths of the two lists.

b) Write a function product that takes two lists of integers as arguments and that returns the list of all possible
products formed by multiplying a value from the first list by a value in the second list. You may assume that the lists
contain no duplicates. The values may appear in any order in the result. For example, the call product([1, 2,
3], [5, 7]) should return a list of the 6 possible values obtained by multiplying one of the 3 numbers in the first
list by one of the 2 numbers in the second list. One possible answer is [5,7,10,14,15,21]. You should use
cartesianProduct to write your solution. As with cartesianProduct, if either list passed as a parameter is
empty, the result should be an empty list.

10. Functions
Write a function factors that takes the prime factorization of an integer as an argument and that returns a list of all
of its factors. Recall that a factor of an integer is a number that goes evenly into it. For example, the factors of 24 are
[1,2,3,4,6,8,12,24]. Your function will be passed a list of tuples of the form (p, n) where each tuple indicates
that the number has a factor of p to the nth power where p is a prime. For example, the prime factorization of 24 is
2^3 * 3^1, so it would be represented as [(2, 3), (3, 1)]. The factors can appear in any order. For example:

• factors([(2, 3), (3, 1)]) could return [1,2,3,4,6,8,12,24] or [1,3,2,6,4,12,8,24]

Because the factors can appear in any order, these represent just two of the possible correct answers. As another
example, if we wanted to compute the factors of 600:

• factors([(2, 3), (3, 1), (5, 2)]) could return
[1,5,25,3,15,75,2,10,50,6,30,150,4,20,100,12,60,300,8,40,200,24,120,600]

Your function must use the prime factorization to solve this problem. You can't, for example, search for factors by
checking each consecutive integer up to the square root, as we did in a past homework assignment. Another way of
saying this is that the running time of your function has to be related to the number of factors rather than the
magnitude of the factors.

5 of 7

CSE 341 Sample Midterm #2
Solutions

1. Expressions
Expression
a) reduce(op *, 3--5)
b) mapx(hd o tl, [8--12, 4--9, 7--8, 8--10])
c) mapx(fn x => x mod 4, 1--7)
d) reduce(op +, mapx(fn x => x * x, 1--4))
e) filterx(fn x => x mod 4 > 1, 1--12)
f) mapx(fn x => "(" ^ x ^ ")", words)
g) reduce(op @, [1--3, 4--6, 5--7])
h) mapx(fn x => real(x) + 0.5, 1--4)
i) reduce(op +, mapx(size, words))
j) reduce(op *, mapx(fn x => 2 * x - 1, 2--4))

Value
60
[9,5,8,9]
[1,2,3,0,1,2,3]
30
[2,3,6,7,10,11]
["(live)","(long)",
 "(and)","(prosper)"]
[1,2,3,4,5,6,5,6,7]
[1.5,2.5,3.5,4.5]
18
105

2. Types
Expression
a) lst
b) [tl(lst)]
c) (8, [["a", "b"], ["c", "d"]])
d) fn x => (hd(x) mod 3, tl(x))
e) real o hd o tl

Type
(string * int) list
(string * int) list list
int * string list list
int list -> int * int list
int list -> real

3. Scope

val answer = 199

4. Curried Functions

val sumPositives = reduce2 op+ o (filter2 (curry op< 0));
val strip = map2 (implode o rev o tl o rev o explode);

5. Functions
fun powers(n, m) =
 let fun loop(0, product) = [product]
 | loop(i, product) = product::loop(i - 1, product * m)
 in loop(n, 1)
 end;
powers(5, 2);

6. Functions
fun sortedChars(s) = implode(quicksort(op <=, mapx(Char.toLower,
 filterx(Char.isAlpha, explode(s)))));

6 of 7

CSE 341 Sample Midterm #2
Solutions (continued)

7. Functions
fun interleave([], ys) = ys
| interleave(xs, []) = xs
| interleave(x::xs, y::ys) = x::y::interleave(xs, ys);

8. Data Types
a)
fun nodes(Empty) = 0
| nodes(Node(_, left, right)) = 1 + nodes(left) + nodes(right);

b)
fun leaves(Empty) = []
| leaves(Node(root, Empty, Empty)) = [root]
| leaves(Node(_, left, right)) = leaves(left) @ leaves(right);

9. Functions
a)
fun cartesianProduct([], _) = []
| cartesianProduct(x::xs, ys) =
 map(fn y => (x, y), ys) @ cartesianProduct(xs, ys);

b)
fun product(xs, ys) = map(fn (x, y) => x * y, cartesianProduct(xs, ys));

10. Functions
fun factors([(p, n)]) = powers(n, p)
| factors((p, n)::rest) = product(powers(n, p), factors(rest));

7 of 7

