
Scheme

• Like ML, functional focus with imperative features
– anonymous functions, closures, no return statement, etc.
– but every binding is mutable

• A really minimalist syntax/semantics
– In the LISP tradition

• LISP was earliest language that targeted symbolic computation

– Current standard is 50 pages
• Dynamically typed while still being type-safe

– Less compile-time checking (run-time checking instead)
– Accepts more perfectly reasonable programs

• Some advanced features for decades
– Programs as data, hygienic macros, continuations



Scheme Syntax/Semantics

• Scheme term is either:
– an atom (identifier, number, symbol, string, ...)
– a sequence of terms (t1 ... tn)

• Semantically, identifiers are resolved in an environment and
other atoms are values.

• The semantics of a sequence depends on t1 :
– certain character sequences are “special forms”
– otherwise a sequence is a function application

• Some special forms:
– define
– lambda
– if, cond, and, or
– let, let*, letrec


