
Base types and compound types

• Languages typically provide a small number of “built-
in” types and ways to build compound types out of
simpler ones:
– Base types examples: int, real, char, string, bool
– Type builder examples: tuples, lists, records (won’t cover)

• Base types clutter a language definition; better to
make them libraries when possible.
– ML does this to a remarkable extent (e.g., type bool can be

defined directly and if/else expressions are implemented as
“syntactic sugar” built on top of the case expression)



Compound-type flavors

• Conceptually, just a few ways to build compound types:
– “Each-of ”: A t contains a t1 and a t2
– “One-of ”: A t contains a t1 or a t2
– “Self-reference”: The definition of t may refer to t

• Examples:
– tuple: int * bool
– bool: either true or false
– list: int list list

• Remarkable: A lot of data can be described this way.
• (optional jargon: product types, sum types, recursive types)


