
What is a programming language?

• Here are separable concepts for defining and 
learning a language: 
– syntax: how do you write the various parts of the language? 

– semantics: what do programs mean? (One way to answer: 
what are the evaluation rules?) 

– idioms: how do you typically use the language to express 
computations? 

– libraries: does the language provide “standard” facilities such 
as file-access, hashtables, etc.? How? 

– tools: what is available for manipulating programs in the 
language? (e.g., compiler, debugger, REP-loop) 



ML basics

• A program is a sequence of bindings

• One kind of binding is a variable binding

val x = e ; (semicolon optional in a file) 

• A program is evaluated by evaluating the bindings in order 

• A variable binding is evaluated by: 

– Evaluating the expression in the environment created by the 

previous bindings. This produces a value. 

– Extending the (top-level) environment to bind the variable to the 

value.

• Examples of values: 13, 4.8, true, “hello”, [3, 4, 5], (8, 8.2)



Critical language concepts

• Expressions have a syntax (written form) 

– E.g.: A constant integer is written as a digit-sequence 

– E.g.: Addition expression is written e1 + e2 

• Expressions have types given their context 

– E.g.: In any context, an integer has type int 

– E.g.: If e1 and e2 have type int in the current context, then e1+e2 

has type int 

• Expressions evaluate to values given their environment 

– E.g.: In any environment, an integer evaluates to itself 

– E.g.: If e1 and e2 evaluate to c1 and c2 in the current environment, 

then e1+e2 evaluates to the sum of c1 and c2 



Function definitions

• A second kind of binding is for functions (like Java methods 
without fields, classes, statements, ...) 

• Syntax: fun x0 (x1 : t1, ..., xn : tn) = e 

• Typing rules: 

1. Context for e is (the function’s context extended with) x1:t1, ..., 
xn:tn and : 

2. x0 : (t1 * ... * tn) -> t where : 

3. e has type t in this context 

• (This “definition” is circular because functions can call 
themselves and the type-checker “guessed” t.) 

• (It turns out in ML there is always a “best guess” and the type-
checker can always “make that guess”.) 



Function applications (aka calls)

• Syntax: e0 (e1,...,en) (parens optional for one argument) 

• Typing rules (all in the application’s context): 

1. e0 must have some type (t1 * ... * tn) -> t 

2. ei must have type ti (for i=1, ..., i=n) 

3. e0 (e1,...,en) has type t 

• Evaluation rules: 

1. e0 evaluates to a function f in the application’s environment 

2. ei evaluates to value vi in the application’s environment 

3. result is f ’s body evaluated in an environment extended to bind xi 

to vi (for i=1, ..., i=n). 

• (“an environment” is actually the environment where f was 

defined)



Let bindings

• Motivation: Functions without local variables can be poor style 
and/or really inefficient. 

• Syntax: let b1 b2 ... bn in e end where each bi is a binding. 

• Typing rules: Type-check each bi and e in context including 
previous bindings. Type of whole expression is type of e. 

• Evaluation rules: Evaluate each bi and e in environment 
including previous bindings. Value of whole expression is result 
of evaluating e. 

• Elegant design worth repeating: 

– Let-expressions can appear anywhere an expression can. 

– Let-expressions can have any kind of binding. 
• Local functions can refer to any bindings in scope. 

• Better style than passing around unchanging arguments. 


