
Can C# Replace Java in CS1 and CS2?
 Stuart Reges

Department of Computer Science
University of Arizona
Tucson, AZ 85712

reges@cs.arizona.edu

ABSTRACT
Microsoft has developed a language called C# (�see sharp�) that
it claims will allow programmers to �quickly and easily build
solutions� for its new.NET platform [3]. The language has much
in common with Java, particularly in those features emphasized
in CS1 and CS2 courses. It also includes some of the desirable
features of C++ that are missing from Java as well as some new
features not available in either language. This paper explores the
pros and cons of teaching CS1 and CS2 using C# instead of Java
and concludes with a discussion of the author�s plans for
teaching such a course in the fall of 2002.

Categories & Subject Descriptors: D.3.3 [Programming
Languages]: Language Contructs and Features � classes and
objects, control structures, data types and structures, dynamic
storage management.

General Terms: Languages.

Keywords: CS1, CS2, object oriented programming, C#, Java.

1. Motivation
Bill Gates has referred to the .NET technologies as �the
breakthrough tools that will allow developers to write the next
generation of applications� [2]. He might be spouting marketing
hype, but the release of .NET clearly constitutes a watershed for
the company.
Many schools will choose to ignore what Microsoft does, but
others will find the Microsoft connection appealing. Few
departments would sacrifice the quality of instruction just to
teach .practical. tools that are currently used in industry. But if
C# turns out to be as useful as Java in teaching the CS
curriculum, some schools will choose C# instead of Java because
of the particular interests of their students, their school or their
community.
There has been a shift away from C++ in computer science
education in recent years. The reasons for this shift were
documented in a report from an ad-hoc committee formed by the
College Board to plan for the future of the AP/CS course[1].
They mention that their primary reasons for changing were type
safety, simplicity and object orientation. They felt that Java was
superior to C++ in all three aspects. These goals were also
primary in the design of C#. The C# language specification says
that, �C# is a simple, modern, object oriented, and type-safe
programming language derived from C and C++ [4].�

Schools that have already switched to Java are unlikely to want
to switch again, but many schools are still using C++ and they
might decide that switching to C# instead of Java makes sense
for them.

2. The Overlap of C# and Java
Microsoft characterizes C# as a variant of C++, but it most
closely resembles Java.
The two have many common characteristics.

• automatic garbage collection
• type safety
• no free functions/variables (everything in a class)
• runtime checks on type cast
• single inheritance
• interfaces, multiple implementation of interfaces
• reflection
• exceptions with try/catch
• threads
• a rich set of collection classes

Consider the following short Java program.
public class Figure
{
 public static void main(String[] args)
 {
 for (int i = 0; i < 6; i++) {
 for (int j = 0; j < 6; j++)
 if (i == j)
 System.out.print("\\");
 else if (i == 6 - j - 1)
 System.out.print("/");
 else
 System.out.print("*");
 System.out.println();
 }
 }
}

This produces a simple �X� figure as output:
****/
***/*
\/
/
*/***
/****\

The corresponding C# program is nearly identical:
using System;

public class Figure
{
 public static void Main(string[] args)
 {
 for (int i = 0; i < 6; i++) {
 for (int j = 0; j < 6; j++)
 if (i == j)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE'02, June 24-26, 2002, Aarhus, Denmark.
Copyright 2002 ACM 1-58113-499-1/02/0006...$5.00.

 Console.Write("\\");
 else if (i == 6 - j - 1)
 Console.Write("/");
 else
 Console.Write("*");
 Console.WriteLine();
 }
 }
}

As in Java, methods associated with a class are declared static
and a special static method called Main launches each
application. The control structures are nearly identical between
the two languages. And in place of Java�s System.out with print
and println methods C# has Console.Write and
Console.WriteLine methods.
Even class declarations are nearly identical. Consider the
following Java class.
public class Point
{
 public Point(double x, double y)
 {
 myX = x;
 myY = y;
 }

 public Point()
 {
 this(0.0, 0.0);
 }

 public String toString()
 {
 return "(" + myX + ", " + myY + ")";
 }

 private double myX;
 private double myY;
}

And consider its C# counterpart.
public class Point
{
 public Point(double x, double y)
 {
 myX = x;
 myY = y;
 }

 public Point(): this(0.0, 0.0)
 { }

 public override string ToString()
 {
 return "(" + myX + ", " + myY + ")";
 }

 private double myX;
 private double myY;
}

As in Java, string concatenation is used often and the language
has a standard .to string. method in the object class that is
overridden in subclasses. Constructors and class methods are
defined with a similar syntax, although C# requires explicit
overriding of the inherited ToString method.
C# is not, however, just another implementation of Java. It has
many features that Java does not, including enums, reference
parameters, structs, properties, indexed properties and operator
overloading. These extra features increase the overall complexity

of the language, but an instructor could teach a Java-like CS1
and CS2 course without covering these. In that sense, they
provide more of an opportunity than an incumbrence. Many
instructors, for example, will find it refreshing to be able to write
a true swap function, which can�t be done with the value
parameter mechanism in Java.

3. The Benefits of C# over Java
In 1997 Mark Weiss presented the first significant SIGCSE
paper describing the use of Java in CS2[6]. He warned us in a
section entitled �Java Annoyances� that Java is by no means
perfect. Many of us have since come to learn about those
annoyances from firsthand experience.
Eric Roberts provided a long list of Java annoyances in
describing his �MiniJava� language intended for novices [5].
Most of the simplifications he has included in defining MiniJava
have been included in C# as well, although C# can by no means
be considered the kind of �mini� language he advocates for
novices.
C# is also by no means perfect, but the language designers had
the benefit of knowing about Java�s weaknesses and this allowed
them to address many of them.

3.1 Standard Input
It is fairly easy to produce simple console output in Java, but
reading simple console input is anything but simple. One would
think that if System.out is the object to use for writing to the
console that System.in would be the object for reading from the
console. But System.in has a confusing set of reading operations
(read one byte as an int or read into a byte array) and they all
potentially throw an IO exception that must be handled.
Of course, an experienced Java programmer will know how to
read from the console, but because the standard class libraries do
not make it easy, everyone comes up with their own solution.
There are many different �easy input� classes that are available,
but every textbook seems to have its own class. Some textbooks
stay with standard Java and show students how to construct a
BufferedReader object, but then one is stuck with the problem of
exceptions. Most authors are wise enough not to try to cover
try/catch blocks just to read console input, but then they end up
advising students to say �throws IOException� at the end of the
main method and any other method that performs reading
operations. This is confusing for beginners and encourages bad
habits.
As demonstrated in the sample program in the previous section,
C# provides the standard utilities Console.Write and
Console.WriteLine that are exact parallels of Java�s
System.out.print and System.out.println. C# also provides
Console.Read for reading one character of input and
Console.Readline for reading an entire line of input. They are
simple to use, as in the example below.
Console.Write("What is your name? ");
string name = Console.ReadLine();

Reading numbers is a bit more work, but not nearly as difficult
as in Java.
Console.Write("Give me an int-> ");
int x = int.Parse(Console.ReadLine());

3.2 Simpler Main
The sample C# program in the previous section had a main
method with a signature almost identical to the standard Java
main method. But in C#, as in C and C++, one can use a simpler
Main method. For example, the classic hello world program can
be written as follows in C#.
using System;

public class Hello
{
 public static void.Main()
 {
 Console.WriteLine("hello world");
 }
}

It may seem like a trivial issue to be able to leave out the
�string[] args� parameter in the main method, but this is the kind
of confusing detail that makes Java a poor choice for novice
programmers. We find ourselves having to tell our students to
�just ignore that� or that �we�ll get to that eventually� and for
now to just �think of that as a magical incantation that you
always have to include.�

3.3 Consistent Object Model
Java makes a distinction between primitive types like int, double,
char and boolean and reference types (objects). To use a
primitive value like an int where Java expects an object, one
must construct a �wrapper� object that holds the primitive data.
One must also unwrap the value when trying to get it back. For
example, pushing two ints onto a stack and then popping them
off again requires the following code.
Stack s = new Stack();
s.push(new Integer(19));
s.push(new Integer(28));
int x = ((Integer)s.pop()).intValue();
int y = ((Integer)s.pop()).intValue();

This is difficult for novices to understand and creates an artificial
distinction C# has a more consistent object model. Every type,
even types like int and double, are treated as objects. One can
call the ToString method of a simple int, just as one can for any
other object. And one can use ints wherever one would use an
object. The stack code would be written as follows in C#.
Stack s = new Stack();
s.push(19);
s.push(28);
int x = (int)s.pop();
int y = (int)s.pop();

There is still a cast when removing an element from the stack,
but that�s because the stack is defined in terms of the generic
type object. The cast is exactly what you�d expect it to be�to
type int. If we�d pushed complex objects onto the stack, we
would have needed the same kind of cast when removing values.
C# provides this more consistent object model by automatically
�boxing� and �unboxing� simple data like ints. In effect, wrapper
objects are used when necessary, but the compiler does all of the
work, not the programmer.
One of the primary benefits of this more consistent object model
is that CS1 courses can explore the use of collections classes
much earlier than they would otherwise. Most Java CS1 books
cover arrays before they discuss structures like ArrayList because

it isn�t easy to manipulate simple values like ints in an Arraylist.
C# has no such limitation, so it would make sense to have
students using ArrayList and other collections early in the course
before they learn how to implement such structures themselves.

3.4 Iterators and the foreach Loop
The iterator pattern is one of the most fundamental in object-
oriented programming, yet it is considered by most authors to be
an advanced topic. Students first learn �simpler� loops like
array-processing loops before they study iterators. There is
nothing intrinsically complex about iterators. In fact, the concept
is much simpler than that of array indexing.
C# has the same for loops and while loops that Java has, but it
also has a simple foreach loop that can be used for any collection
that has an iterator (i.e., that implements a standard interface
known as IEnumerable). For example, the following code
constructs an array list, adds various integers to it and then
computes the sum of the values.
ArrayList list = new ArrayList();
list.Add(8);
list.Add(7);
list.Add(19);
list.Add(308);

int sum = 0;
foreach (int x in list)
 sum += x;
Console.WriteLine("sum = " + sum);

This kind of code could be discussed early in a CS1 course. The
syntax of the foreach loop is so simple that it might be desirable
to teach it before teaching for loops and while loops.
The existence of the foreach loop also provides an incentive to
the students to include an iterator in any structure that they
define. Any C# programmer will be familiar with the foreach
loop and the iterator will provide a simple and convenient way to
access the elements. Thus, instead of being an advanced topic,
iterators become an early topic and an idea that is integrated into
the language itself.

3.5 Properties
Novices find it at least annoying and often confusing to have to
define and call get and set methods. Suppose, for example, that
you are defining a point class for storing x and y coordinates and
you wanted to set one point�s coordinates to twice another
point�s coordinates. In Java you�d say something like the
following:
p2.setX(p1.getX() * 2);
p2.setY(p1.getY() * 2);

Of course, one could use public data fields to simplify the syntax,
but then one loses encapsulation. C# allows a programmer to
have the simplified syntax and preserve encapsulation by
defining what is known as a property. A property can be accessed
using the same syntax as a data field, but the access is translated
by the compiler into calls on get and set methods defined in the
property. So the point manipulating code above with C#
properties becomes:
p2.X = p1.X * 2;
p2.Y = p1.Y * 2;

These lines of code are much simpler for a novice to understand.
Properties become particularly handy when the operations are

even more complex or involve familiar concepts like
incrementing with the ++ operator, as in:
p2.X = (p1.X + p1.Y)/(p2.X + p2.Y);
p2.Y++;

Once the get and set methods for the property are defined, the
client of the code does not have to figure out which one to call.
The compiler does this for the client, which makes life much
simpler.

3.6 Convenient Custom Classes
No matter how rich the class libraries of a language are, most
instructors will want to provide some custom classes for their
students to use. C# provides convenient features for simplifying
the interface for such classes. As described in the previous
section, properties can make client code easier to write. C# also
allows operator overloading and type conversions. While an
instructor might choose not to teach students how to do operator
overloading or how to define conversions, the instructor will find
it useful to use these tools in creating classes for their students to
use. This will allow them to create the simplest possible client
interfaces for their students.
For example, when I taught CS1 in C++ I used a custom class
written by Owen Astrachan of Duke University for manipulating
dates. It was fairly simple for students to figure out things like
how many days old they are. This seemed like a much more
interesting program to write than a program that adds two
numbers together. A person can add the numbers by themselves
easily, but figuring out how many days you�ve been alive isn�t
trivial.
I stopped using this assignment in Java because the standard date
classes are too complex to use. In C# the assignment again is
reasonable. Using standard classes, students can write the
following code.
DateTime bday = new DateTime(1983, 9, 6);
TimeSpan age = DateTime.Now - bday;
Console.WriteLine(("I am :");
Console.WriteLine(age.TotalDays + " days old");
Console.WriteLine(age.TotalMinutes +
 " minutes old");
Console.WriteLine(age.TotalSeconds +
 " seconds old");

It is particularly convenient that the classes provided by the
standard C# libraries are so easy to use, but even if they weren�t,
the language provides the ability to define your own custom class
with the behavior you prefer.
Another useful feature for creating custom classes is the ability to
define indexed properties. This is similar to overloading the []
operator in C++. If you have designed a collection, you can allow
people to use an array-like syntax to refer to individual elements.

3.7 Miscellaneous
C# includes several other nice features that have the potential of
improving a CS1 or CS2 course. Novices often accidentally leave
off a break statement in defining a switch statement. This is not
allowed in C# and will lead to a helpful compiler error message
rather than a subtle bug. C# includes reference parameters, so
that on those occasions when you really want to write a swap
function, you can. It includes enumerated types that add to
readability. One can even write out an enumerated type and C#
writes out the name of the constant, not an int. C# also has what

are known as �delegates.� A delegate can be thought of as a type-
safe function pointer. This might lead to interesting possibilities
particularly in the CS2 course. For example, one might define a
�map� or �forall� method that takes a function and applies it to
every element of the collection. Or one might provide a boolean
function to filter a list. The C++ Standard Template Library
provides many such utilities, but the syntax and semantics of
STL iterators are rather complex for CS2 students.

4. What about the JVM?
Another distinguishing characteristic of Java is that it compiles
not to native code but to Java .bytecodes. to be executed on the
Java Virtual Machine (JVM). This intermediate language makes
it easier to execute Java code across many platforms. You simply
need a JVM for each platform you want to use.
While this is certainly an interesting aspect of Java, we don�t
tend to teach much about it to our students in CS1 and CS2. We
mention it, but few students really understand this distinction. So
it�s not clear that we would lose much by switching to C#.
C# also has its own interesting properties. Microsoft does not use
the term �virtual machine� in describing the C# compiler, but
there is a C# virtual machine. The language is compiled into an
intermediate language known as MSIL (Microsoft Intermediate
Language). This intermediate language is very similar to Java
bytecodes. Microsoft does not call this a virtual machine because
unlike Java, which is interpreted, MSIL is just-in-time compiled
to native code before execution.

5. What About MultiPlatform?
The single biggest difference between Java and C# is that Java
was designed to run on multiple platforms and C# was designed
to run with multiple languages. Some people have claimed that it
is important to teach the concept of multiple platforms to our
students, but this is really more of a logistical question than a
pedagogical question. If you use Java in your CS1 and CS2
courses, your students will have a number of platforms to choose
from for completing their assignments (Windows, Unix, linux,
MacOS, etc). If you use C# in your CS1 and CS2 courses your
students will be limited (at least for now) to Windows as a
platform.
Again, I don.t believe that we teach our students how Java
manages to be multiplatform. Those who do will find that they
can substitute a discussion of how C# manages to work well with
other languages. The .NET platform includes a Common
Language Runtime (CLR) that allows one to mix code from
multiple languages. All of the code compiles to the same
intermediate language, so it is extremely interchangeable. For
example, one can take code written in C++ and extend it in C#,
writing C# classes that inherit from C++ classes.

6. But isn�t Java .Cool.?
As Mark Weiss pointed out in his 1997 paper, .large numbers of
students were excited to be learning cutting-edge technology�
�Although many students indicated that they worked harder in
this course than any other, most seemed eager to do so, because
they felt they were learning a marketable skill [6].�
Java may still have an aura of .cool,. but it is no longer cutting-
edge. Sun and others have worked tirelessly to extend the class

libraries to allow Java programmers to keep up with technology
trends, but eventually these extensions upon extensions upon
extensions start to become incomprehensible.
This is another area where Microsoft had the benefit of coming
to the party late. They had the opportunity to incorporate the
latest technologies like XML and SOAP into their class libraries
and their development tools. Microsoft claims that programmers
will find it much easier to create web services and to program
mobile devices using the new .NET framework. The jury is still
out on whether or not that�s true, but Microsoft had a wonderful
opportunity to start from scratch rather than extending an
existing framework and it�s likely that they got a lot of it right.

7. Future Plans
After teaching C# to a group of junior/senior level
undergraduates, I have come to believe that C# might work well
as a CS1/CS2 language. I hope to offer a C# course in fall 2002
for honors students. Our department offers an accelerated one-
semester course that covers all of CS1 and CS2 in 15 weeks. I
hope to cover the same material in 13 weeks using C# so that I�ll
have two weeks to discuss how Java differs from C# and to have
the students write some Java programs. That way they should
leave the course with the ability to program in either language.
This goal would probably not be attainable with mainstream
students, but it should be possible with a small group of honors
students.

8. Conclusions
C# has tremendous overlap with Java, which means that as a
language it will probably be as effective as Java in teaching CS1
and CS2. It fixes many of the shortcomings of Java that have
been particularly difficult for novice programmers and it provides
extra features that have the potential to enrich the course.
C# is, however, more complex than Java and there is always a
price for complexity. Every extra keyword, construct and control

structure makes the language more difficult for a novice. One can
teach a subset, but students are often dissatisfied with this
approach.
On the whole, the languages are probably comparable. Some will
argue that Java�s six of one is greater than C#�s half dozen of
another and others will argue the opposite, but there is far more
overlap than difference, particularly for the features most often
taught in CS1 and CS2.
Although this paper has mostly ignored political and logistical
questions, those are likely to be the issues that determine how
individual schools proceed.

9. References
[1] Astrachan, et al. Recommendations of the AP Computer

Science Ad Hoc Committee, 2000.
http://www.collegeboard.org/ap/computer-science

[2] Gates, Bill, speech to TechEd 2001,
http://www.microsoft.com/billgates/speeches/2001/06-
19teched.asp

[3] MSDN, C# Introduction and Overview, 6/26/00,
http://www.msdn.microsoft.com/vstudio/nextgen/technology/
csharpintro.asp

[4] MSDN, C# Language Specification, Version 0.28, 5/7/01,
http://msdn.microsoft.com/vstudio/nextgen
/technology/Csharp_Language_Specification.doc

[5] Roberts, Eric, An Overview of MiniJava, SIGCSE
Symposium 2001, pages 1-5

[6] Weiss, Mark, Experiences Teaching Data Structures with
Java, SIGCSE Symposium 1997, pages 164-168

