CSE 341:
Programming Languages

Dan Grossman
Winter 2008
Lecture 6— Nested pattern-matching; course motivation

-

Dan Grossman CSE341 Winter 2008, Lecture 6

/Patterns

What we know:
e case-expresssions do pattern-matching to choose branch

e val-bindings and fun-arguments also do pattern-matching

— All functions take one argument

e Can match datatypes (including lists, options) and records
(including tuples)

The full story is more general

-

Dan Grossman CSE341 Winter 2008, Lecture 6

/Deep patterns \

Patterns are much richer than we have let on. A pattern can be:

e A variable (matches everything, introduces a binding)
e _ (matches everything, no binding)

e A constructor and a pattern (e.g., C p) (matches a value if the
value “is a C" and p matches the value it carries)

e A pair of patterns ((pl,p2)) (matches a pair if p1 matches the
first component and p2 matches the second component)

e A record pattern...

- /

Dan Grossman CSE341 Winter 2008, Lecture 6 3

/Can you handle the truth?

It's really:

e val p = e

e fun f pl = el | £ p2=e2 ... | £f pn=en

e case e of pl => el | ... | pn => en
Inexhaustive matches may raise exceptions and are bad style.

Example: could write Rope pr or Rope (ri1,r2)

So: The definition of pattern-matching is recursive over the

value-being-matched and the pattern.

Binding a variable is just a base case.

-

Dan Grossman CSE341 Winter 2008, Lecture 6

/Some function examples \

e fun f1 () = 34

o fun f2 _ = 34

e fun f3 (x,y) = x +y

e fun f4 pr = let val (x,y) = pr in x + y end
Is there any difference to callers between £3 and £47

In most languages, “argument lists” are syntactically separate,
second-class constructs.

Can be useful: £3 (if el then (3,2) else pr)
e (This was my answer to Jill's question on Wednesday.)

See lec6.sml for a few examples where nested patterns are quite nice.

- /

Dan Grossman CSE341 Winter 2008, Lecture 6 5

/Cou rse Motivation \

| owe you an answer to why 341 has material worth learning.

1. Why learn programming languages that are quite different from
Java, C, C++7

2. Why learn the fundamental concepts that appear in all (most?)
programming languages?

3. Why focus on functional programming (avoiding mutation,
embracing recursion, and writing functions that take/return other
functions)?

- /

Dan Grossman CSE341 Winter 2008, Lecture 6 6

/A couple questions...

What's the best car?

What are the best kind of shoes?

-

Dan Grossman CSE341 Winter 2008, Lecture 6

/Aren’t all languages the same? \

Yes: Any input-output behavior you can program in language X you

can program in language Y

e Java, ML, and a language with one loop and three infinitely-large

integers are “equal”
e This is called the “Turing tarpit”

Yes: Certain fundamentals appear in most languages (variables,
abstraction, one-of types, inductive definitions, ...)

e Travel to learn more about where you're from
e ML, Scheme, Ruby well-suited for letting these fundamentals shine

No: Most cars have 4 tires, 2 headlights, ...

\\o Mechanics learn general principles and what's different /

Dan Grossman CSE341 Winter 2008, Lecture 6 8

/Aren't the semantics my least concern?

Admittedly, there are many important considerations:
e What libraries are available?
e What can get me a summer internship?
e \What does my boss tell me to do?
e What is the de facto industry standard?
e What do | already know?

Technology leaders affect the answers to these questions.

Sound reasoning about programs, interfaces, and compilers requires
knowledge of semantics.

And there is a place in universities for learning deep truths and
\\beautiful insights as an end in itself.

Dan Grossman CSE341 Winter 2008, Lecture 6 9

/Aren't languages somebody else’s problem? \

If you design an extensible software system, you'll end up designing a
(small?) programming language!

Examples: VBScript, JavaScript, PHP, ASP, QuakeC, Renderman,
bash, AppleScript, emacs, Eclipse, AutoCAD, ...

- /

Dan Grossman CSE341 Winter 2008, Lecture 6 10

/Functional programming \

Okay, so why ML and Scheme where:

e Mutation is discouraged

e Datatype-based one-of types

e Higher-order functions (next week)
Because:

1. These features are invaluable for correct, elegant, efficient
software (great way to think about computation).

2. Functional languages have a history of being ahead of their time

3. They are well-suited to where computing is going (multicore and
data centers)

\\I\/Iuch of the course is (1), so let’s give an infomercial for (2) and (3)/

Dan Grossman CSE341 Winter 2008, Lecture 6 11

/Ahead of their time \

e Garbage collection (Java didn't exist in 1995, SML and Scheme
did)

e Generics (List<T> in Java, C#), much more like SML than C4++
e XML for universal data representation (like Scheme / Lisp)

e Function closures in Python, Ruby, etc.

e Ruby's iterators lifted from CLU (another “useless language™)

All features dismissed as, “fine for academics, but will never make it in
the real world".

e Maybe datatypes or currying or multimethods will be next...

\\o “Conquering” vs. “assimilation” /

Dan Grossman CSE341 Winter 2008, Lecture 6 12

/Recent Surge \

o [+
o C# 3.0

e Multicore computing (Burton Smith quotation)
e MapReduce / Hadoop (first published in 2004)

e Small companies (Jane Street, Galois, many others)
— And not so small (Ericson’s Erlang)

— All consider functional programming a key competitive
advantage

x In part for hiring smarter people
e Lots of research projects (e.g., Macah compiler at UW)

Note: None of these examples use SML or Scheme, but that's okay:
\ihink how much you've learned in the last 10 days. /

Dan Grossman CSE341 Winter 2008, Lecture 6 13

/Summary \

There is no such thing as a “best programming language”. (There are

good general design principles we will study.)

A good language is a relevant, crisp, and clear interface for writing
software.

Software leaders should know about programming languages.

Learning languages has super-linear payoff.

e But you have to learn the semantics and idioms, not a cute
syntactic trick for printing “Hello World" .

Functional languages have been on the leading edge for decades, but
ideas get absorbed by the masses slowly.

e Perhaps things are starting to change?

\\o Even if not, it will make you a better Java/C programmer /

Dan Grossman CSE341 Winter 2008, Lecture 6 14

