
CSE 341, Winter 2008, Lecture 5 Summary
Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of

all the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

This lecture covers two topics:

• It continues our investigation of datatypes and pattern-matching for defining and analyzing data

• It describes tail recursion and how to use accumulators to make more functions tail recursive

We can summarize what we know about datatypes and pattern matching from the previous lecture as
follows: The binding

datatype t = C1 of t1 | C2 of t2 | ... | Cn of tn

introduces a new type t and each constructor Ci is a function of type ti->t. One omits the “of ti” for a
variant that “carries nothing.” To “get at the pieces” of a t we use a case expression:

case e of p1 => e1 | p2 => e2 | ... | pn => en

A case expression evaluates e to a value v, finds the first pattern pi that matches e, and evaluates ei to
produce the result for the whole case expression. So far, patterns have looked like Ci(x1,...,xn) where Ci
is a constructor of type t1 * ... * tn -> t (or just Ci if Ci carries nothing). Such a pattern matches a
value of the form Ci(v1,...,vn) and binds each xi to vi for evaluating the corresponding ei.

We can contrast datatype bindings, which create new types, with type synonyms, which simply create
abbreviations for other types. An example is:

type intpair = int * int

With such a binding, intpair is now the same type as int * int. For example, this silly code type-checks:

fun f (x : intpair, y : int * int) = if true then x else y
val z = f((1,2),(3,4))

Returning to datatypes and pattern-matching, it turns out that options and lists are essentially just
datatypes and stylistically one should generally use pattern-matching for them, not the functions null, hd,
tl, isSome, and valOf we saw previously. (We used them because we had not learned pattern-matching
yet.)

For options, the constructors are NONE, which carries nothing, and SOME, which carries one value of
any type you want. For example, SOME 3 has type int option and NONE can have type int option or
(int * int) option or ’a option. You can define your own datatypes that work for “any type” like this,
but we won’t discuss how here.

Lists are similar except the constructor syntax is unusual. The constructor [] carries nothing. The
constructor :: carries two things, one of type t and one of type t list for any t, and :: is written between
the two things.

Since NONE, SOME, [], and :: are constructors, we use them in patterns just like any other constructors.
For example:

fun inc_or_zero intoption =
case intoption of

NONE => 0
| SOME i => i+1

fun sum_list intlist =
case intlist of

[] => 0
| hd::tl => hd + sum_list tl

fun append (l1,l2) =
case l1 of

[] => l2
| hd::tl => hd :: append(tl,l2)

1

There are several reasons to prefer pattern-matching over functions that test (like null) and extract
values (like hd and tl). With a case expression, it’s easier to check for missing and redundant cases; in fact,
the type-checker does it for you. The syntax is more concise. If you want to define functions like null or hd,
you can easily do so using pattern-matching. (This is exactly what the standard library does. The functions
are useful for passing to other functions, as we will see in a few lectures.)

So far we have used pattern-matching for one-of types, but we can use them for each-of types also. Given
a record value {f1=v1,...,fn=vn}, the pattern {f1=x1,...,fn=xn} matches and binds xi to vi. As you
might expect, the order of fields in the pattern does not matter. As before, tuples are syntactic sugar for
records, so the tuple value (v1,...,vn) matches the pattern (x1,...,xn). So we could write this function
for summing the three parts of an int * int * int:

fun sum_triple triple =
case triple of
(x,y,z) => z + y + x

However, case expressions with one branch are strange-looking and poor style. Instead, a val binding can
have a pattern in it. This is just syntactic sugar for a one-branch case-expression; the semantics is to do the
match and raise an exception if it fails. So better style would be:

fun sum_triple_better triple =
let val (x,y,z) = triple
in

x + y + z
end

But we can do even better. Notice that sum_triple and sum_triple_better both have type
int * int * int -> int; they take a triple of ints and produce an int. This function has the same type
and is the best style:

fun sum_triple_best (x,y,z) =
x + y + z

Previously we said such a function took three arguments. That’s how we think and talk about it typically,
but it turns out every function in ML takes one argument. It is just that we can put a pattern where
the argument goes and the semantics is to match the value passed to the function with the pattern and
use the new bindings in the function body. So sum_triple_best is really using syntactic sugar for how
sum_triple_better is written, which in turn is syntactic sugar for how sum_triple is written.

So using a tuple-pattern as a function’s one argument (recall every function takes exactly one argument) is
“just an idiom” albeit a very, very common one. This is an elegant and useful thing. For example, one might
usually have calls like sum_triple_best(1,2,3), but now we know this is just calling sum_triple_best
with the triple (1,2,3), which matches the pattern (x,y,z), binding x to 1, y to 2, and z to 3. Moreover,
we can call sum_triple_best with any expression that evaluates to an int * int * int. For example,
if g has type bool -> int * int * int, then we can write sum_triple_best(g(true)). You cannot do
something like that as conveniently in Java or C because functions there actually take multiple arguments
and there is no way to write a function like g that returns a, “collection of arguments for another function.”

To understand tail recursion and accumulators, consider these two functions for summing the elements
of a list:

fun sum_list_1 lst =
case lst of

[] => 0
| i::lst1 => i + sum_list_1 lst1

2

fun sum_list_2 lst =
let fun f (lst,acc) =

case lst of
[] => acc

| i::lst1 => f(lst1,i+acc)
in

f(lst,0)
end

Both functions compute the same results, but sum_list_2 is more complicated, using a local helper function
that takes an extra argument, called acc for “accumulator.” In the base case of f we return acc and the
value passed for the outermost call is 0, the same value used in the base case of sum_list_1. This pattern
is common: The base case in the non-accumulator style becomes the initial accumulator and the base case
in the accumulator style just returns the accumulator.

Why might sum_list_2 be preferred when it is clearly more complicated? To answer, we need to
understand a little bit about how function calls are implemented. At its simplest, there is a call stack, which
is a stack (the data structure with push and pop operations) with one element for each function call that has
been started but has not yet completed. So when the evaluation of one function body calls another function,
a new element is pushed on the call stack and it is popped off when the called function completes.

So for sum_list_1, there will be one call-stack element (sometimes just called a “stack frame”) for each
recursive call to sum_list_1, i.e., the stack will be as big as the list. This is necessary because after each
stack frame is popped off the caller has to, “do the rest of the body” – namely add i to the recursive result
and return.

Given the description so far, sum_list_2 is no better: sum_list_2 makes a call to f which then makes
one recursive call for each list element. However, when f makes a recursive call to f, there is nothing more
for the caller to do after the callee returns except return the callee’s result. This situation is called a tail
call (let’s not try to figure out why it’s called this) and functional languages like ML typically include an
optimization: When a call is a tail call, the caller’s stack-frame is popped before the call – the callee’s
stack-frame just replaces the caller’s. This makes sense: the caller was just going to return the callee’s result
anyway. For sum_list_2 that means the call stack needs just 2 elements at any point (one for sum_list_2
and one for the current call to f).

Why do implementations of functional languages include this optimization? It is because this way
recursion can sometimes be as efficient as a while-loop, which also does not make the call-stack bigger. The
“sometimes” is exactly when calls are tail calls, but tail calls do not need to be to the same function (f
can call g), so they are more flexible than while-loops that always have to “call” the same loop. Using an
accumulator is a common way to turn a recursive function into a “tail-recursive function” (one where all
recursive calls are tail calls), but not always. For example, functions that process trees (instead of lists)
typically have call stacks that grow as big as the depth of a tree, but that’s true in Java too.

While most people rely on intuition for “which calls are tail calls,” we can be more precise by defining
tail position recursively and saying a call is a tail call if it is in tail position. The definition has one part for
each kind of expression; here are several parts:

• In fun f(x) = e, e is in tail position.

• If if e1 then e2 else e3 is in tail position, then e2 and e3 are in tail position (not e1). (Similar
for case).

• If let b1 ... bn in e end is in tail position, then e is in tail position (not any binding expressions).

• Function-call arguments are not in tail position.

• ...

3

