
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Winter 2008

Lecture 3— Let bindings, options

Dan Grossman CSE341 Winter 2008, Lecture 3 1



'

&

$

%

Let bindings

Motivation: Functions without local variables can be poor style and/or

really inefficient.

Syntax: let b1 b2 ... bn in e end where each bi is a binding.

Typing rules: Type-check each bi and e in context including previous

bindings. Type of whole expression is type of e.

Evaluation rules: Evaluate each bi and e in environment including

previous bindings. Value of whole expression is result of evaluating e.

Elegant design worth repeating:

• Let-expressions can appear anywhere an expression can.

• Let-expressions can have any kind of binding.

– Local functions can refer to any bindings in scope.

Dan Grossman CSE341 Winter 2008, Lecture 3 2



'

&

$

%

More than style

Exercise: hand-evaluate bad_max and good_max for lists [1,2]

[1,2,3], and [3,2,1].

Dan Grossman CSE341 Winter 2008, Lecture 3 3



'

&

$

%

Summary and general pattern

Major progress: recursive functions, pairs, lists, let-expressions

Each has a syntax, typing rules, evaluation rules.

Functions, pairs, and lists are very different, but we can describe them

in the same way:

• How do you create values? (function definition, pair expressions,

empty-list and ::)

• How do you use values? (function application, #1 and #2, null,

hd, and tl)

This (and conditionals) is enough for your homework though:

• andalso and orelse help

• You need options (next slide)

• Soon: much better ways to use pairs and lists (pattern-matching)

Dan Grossman CSE341 Winter 2008, Lecture 3 4



'

&

$

%

Options

“Options are like lists that can have at most one element.”

• Create a t option with NONE or SOME e where e has type t.

• Use a t option with isSome and valOf

Why not just use (more general) lists? An interesting style trade-off:

• Options better express purpose, enforce invariants on callers,

maybe faster.

• But cannot use functions for lists already written.

Dan Grossman CSE341 Winter 2008, Lecture 3 5



'

&

$

%

Let bindings and nesting

Here are a couple of ML examples (of increasing complexity):

val x = [2,3,4];

val squid = let val x=100 in x+x end;

What is the value of squid (and why?)

val a = 4;

val b = 10;

val clam = let val a=100; val b=a+3 in a+b end;

What is the value of clam (and why?)

Dan Grossman CSE341 Winter 2008, Lecture 3 6



'

&

$

%

Let bindings and nesting continued

fun octopus (m : int, n : int) =

let val m=100 in m+n end;

What is the value of octopus(4,5) (and why?)

Dan Grossman CSE341 Winter 2008, Lecture 3 7



'

&

$

%

Let bindings – Mini-exercises

What is the value of x after each of the following sequences of ML

code is executed?

1.

val x = let val y=42 in y+3 end;

2.

val x = 100;

val y = let val x=[2,3,4] in x@x end;

Dan Grossman CSE341 Winter 2008, Lecture 3 8


