CSE 341:
Programming Languages

Dan Grossman
Winter 2008
Lecture 16— define-struct; static vs. dynamic typing

-

Dan Grossman CSE341 Winter 2008, Lecture 16



/Data in Scheme

Recall ML's approach to each-of, one-of, and self-referential types.

Pure Scheme’s approach:
e There is One Big Datatype with built-in predicates.
e Primitives implicitly raise errors for “wrong variant”
e Use pairs (lists) for each-of types

e Can also use for one-of types with explicit “tags”

— Like our force/delay with a boolean field

e Use helper functions like caddr (and/or define your own).

-

Dan Grossman CSE341 Winter 2008, Lecture 16 2



/def ine—-struct \

DrScheme extends Scheme with define-struct, e.g.:

(define-struct card (suit value))
Semantics: Introduce several new bindings...
e constructor (make-card) that takes arguments and make values.

e predicate (card?) that takes 1 argument, return #t only for
values made from the right constructor.

e accessors (card-suit, card-value) that take 1 argument, return
a field, or call error for values not made from the right

constructor.

e mutators (set-card-suit!, set-card-value!) that are like

accessors except they mutate field contents.

- /

Dan Grossman CSE341 Winter 2008, Lecture 16 3




/Idiom for ML datatypes

Instead of a datatype with n constructors, you just use

define-struct m times.
That “these n go together” is just convention.

Instead of case, you have a cond with n predicates and one
“catch-all” error case.

-

Dan Grossman CSE341 Winter 2008, Lecture 16



/cief ine-struct Is special

define-struct creates a new variant for The One Big Datatype.
Claim: define-struct is not a function.
Claim: define-struct is not a macro.

It could be a macro except for one key bit of its semantics: Values
built from the constructor cause every other predicate (including all
built-in ones) to return #f£.

Advantage: abstraction

Disadvantage: Can't write “generic” code that has a case for every
possible variant in every Scheme program.

-

Dan Grossman CSE341 Winter 2008, Lecture 16 5



/Good and Bad Things About Types \

Strong vs. Weak typing

In languages with weak typing, there exist programs that
implementations must accept at compile-time, but at run-time the
program can do anything, including blow-up your computer.

Examples: C, C4++
Old “wisdom”: “Strong types for weak minds”

New “wisdom”: “Weak typing endangers society and costs billions a
year"

Why weak typing? For efficiency and low-level implementation
(important for 1% of low-level systems)

My view: Programming is hard enough without

\inplementation—defined behavior. This has little to do with types. /

Dan Grossman CSE341 Winter 2008, Lecture 16 6



/Static vs. Dynamic Typing \

In ML and Scheme "hi" - "mom" or (- "hi" "mom") are errors, but

in ML it's at “compile-time” (static) and Scheme it's at “run-time”
(dynamic).

e (define (£f) (- "hi" "mom")) fine until you call it, but never
type-checks in ML.
Indisputable facts:

e A language with static checks catches certain bugs without testing
(earlier in the software-development cycle)

e It's impossible to catch exactly the buggy programs at
compile-time
— Impossible (undecidable) to know what code will execute in
what environments, so may give false positives

\\ — Algorithm bugs remain (e.g., using + where you meant -) /

Dan Grossman CSE341 Winter 2008, Lecture 16 7



/Static Checking \

Key questions for a compile-time check (e.g., ML type-checking):

1. What is it checking? Examples (and not):
e Yes: Primitives (e.g., +) aren't applied to inappropriate values

e Yes: Module interfaces are respected
(e.g., don't use private functions)

e No: hd is never applied to the empty list

2. Is it sound? (Does it ever accept a program that at run-time does
what we claimed it could not? “false negative”)

3. Is it complete? (Does it ever reject a program that could not do
the “bad thing" at run-time? “false positive”)

All non-trivial static analyses are either unsound or incomplete.

Good design leads to “useful subsets” of all programs, typically (but
\\not always) ensuring soundness and sacrificing completeness. /

Dan Grossman CSE341 Winter 2008, Lecture 16 8




/A Question of Eagerness \

Again, every static type system provides certain guarantees. Here are

some things for which useful static checks have been developed, but
are not commonly in type systems (yet?): null dereferences,
division-by-zero, data races, ...

There is also more than “compile-time” or “run-time".

Consider 3 / 0.
e Compile-time: reject if code is “reachable” (maybe dead branch)
e Link-time: reject if code is “reachable” (maybe unused function)
e Run-time: reject if code executes (maybe branch never taken)

e Even later: maybe delay error until “bad number” is used to index
into an array or something.

— Crazy? Floating-point allows division-by-zero; gives you

k +inf . 0. /

Dan Grossman CSE341 Winter 2008, Lecture 16 9




/Exploring Some Arguments

la. Dynamic typing is more convenient

(define (f x) (if (> x 0) (x 2 x) #f))
(let ([ans (f y)]) (if ans el e2))

datatype intOrBool = Int of int | Bool of bool
fun f x = if x > 0 then Int (2*x) else Bool false
case f y of

Int 1 => el
| Bool b => e2

-

Dan Grossman CSE341 Winter 2008, Lecture 16

10




/Exploring Some Arguments

1b. Static typing is more convenient

(define (cube x) (if (not (number? x))

(error "bad arguments")

(* x x xX)))
(cube 7)

fun cube x = x * X *Xx
cube 7

-

Dan Grossman CSE341 Winter 2008, Lecture 16

11




/Exploring Some Arguments

~

2. Static typing prevents / doesn't prevent useful programs

e Overly restrictive type systems certainly can (e.g., without
polymorphism a new list library for each list-element type)

can embed Scheme in ML:

datatype SchemeVal = Int of int | String of string
| Fun of SchemeVal -> SchemeVal
| Cons of SchemeVal * SchemeVal

if el

then Fun (fn x => case x of Int i1 => i * i * i)

else Cons (Int 7, String ‘‘hi’’)

Viewed this way, Scheme is “unityped” with “implicit

\\ tag-checking” which is “just” a matter of convenience.

e datatype gives you as much or as little flexibility as you want —

/

Dan Grossman CSE341 Winter 2008, Lecture 16 12



/Exploring Some Arguments \

3. Static/dynamic typing better for code evolution

e Dynamic: If you need to change the type of something, the
program will still compile; easier to incrementally upgrade other

code to support the change?

e Static: If you change the type of something, the type-checker
guides you to all the places you need to change?

In practice, ML's pattern exhaustiveness is great for the latter.

- /

Dan Grossman CSE341 Winter 2008, Lecture 16 13




/Exploring Some Arguments \

4. Types make code reuse harder/easier.

e Dynamic:

— Sound types means you'll always restrict how code is used in
some way that you need not

— By using cons cells for everything, you can reuse lots of libraries

e Static:

— Using separate types catches bugs and enforces abstractions
(don’t accidentally confuse two different uses of cons cells)

— We can provide enough flexibility in practice (e.g., with

polymorphism)

Design issue: Whether to build a new data structure or encode with
\idsting ones (for libraries) is an important consideration. /

Dan Grossman CSE341 Winter 2008, Lecture 16 14



/Exploring Some Arguments

~

-

5. Types make programs faster/slower.

e Static: Programmer controls where tag-tests occur (in patterns)

and knows that compiler need not have unnecessary tests (is

argument to + a number).

e Dynamic: Don't have to code around the type system or duplicate

code; optimizer can remove provably unnecessary tag-tests

Dan Grossman

CSE341 Winter 2008, Lecture 16

15



/Summary \

There are real trade-offs here; you must know them.

It is possible to have rational discussions about them, informed by
facts.

Almost every language checks some things statically and other things
dynamically.

e |t is really a question of what you check statically, but we have an
informal understanding of what type-checking “normally checks

for

- /

Dan Grossman CSE341 Winter 2008, Lecture 16 16




