
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Winter 2008

Lecture 1— Course Introduction

Dan Grossman CSE341 Winter 2008, Lecture 1 1



'

&

$

%

Welcome!
We have 10 weeks to learn different paradigms and fundamental

concepts of programming languages.

With diligence, patience, and an open mind, this course makes you a

much better programmer (in languages we won’t use).

Today in class:

• Course mechanics

• (A rain-check on motivation)

• Dive into ML (homework 1 due Thursday January 17)

In the next day or so:

• Adjust class mail-list settings

• Email homework 0 (worth 0 points) to me

http://www.cs.washington.edu/education/courses/cse341/08wi

Dan Grossman CSE341 Winter 2008, Lecture 1 2



'

&

$

%

Who and What

• 3 class meetings (slides, code, and questions)

– Material on-line (subject to change), but take notes.

– Will try to make “essay versions” of lectures available.

• 1 section (Ben Lerner)

– Essential material on tools, style, examples, language-features,

...

• Office hours (Patrick Carroll, Ben, me)

– Use them

• Course “dictionary” (to be) online

– To help with terminology; not tested; feedback welcome

Dan Grossman CSE341 Winter 2008, Lecture 1 3



'

&

$

%

Textbooks

Texts are good, but take a fairly different approach to explaining

things:

• That’s a good thing, for when my explanation doesn’t make sense.

• But don’t be surprised when I essentially ignore the texts.

• Ask questions about coverage, etc.

• Some but not all of you will do fine without using the texts.

Dan Grossman CSE341 Winter 2008, Lecture 1 4



'

&

$

%

Homeworks

• Approximately weekly: with exams, probably 7 total

• Doing the homework involves:

1. Understanding the concepts being addressed

2. Writing code demonstrating understanding of the concepts

3. Testing your code to ensure you understand

4. “Playing around” with variations, incorrect answers, etc.

You turn in only (2), but focusing on (2) makes the homework

harder

Challenge Problems: Poor use of your time grade-wise, but great

otherwise

Assignments will be done individually.

Dan Grossman CSE341 Winter 2008, Lecture 1 5



'

&

$

%

Academic Integrity

Read every word of the course policy very carefully.

Always explain any unconventional action on your part.

Promoting and enforcing academic integrity has been a personal focus

of mine for 14 years now:

• I trust you completely

• I have no sympathy for trust violations, nor should you

Honest work is the most important feature of a university.

Dan Grossman CSE341 Winter 2008, Lecture 1 6



'

&

$

%

Exams

• Midterm: Friday 8 February, in class

• Final: Wednesday 19 March, 8:30–10:20

Same concepts, but very different format from homework.

• More conceptual (but write code too)

• Will post old exams

Dan Grossman CSE341 Winter 2008, Lecture 1 7



'

&

$

%

Now where were we?
Programming languages:

• Essential concepts relevant in any language

• Specific examples “in natural setting” using ML, Scheme, and

Ruby (where a concept most “shines”)

• Focus on “functional languages” because they are simpler, very

powerful, and teach good practices

– Often a great way to think, even if “stuck” in Java or C

– Languages/concepts increasingly important to the “real world”

First half of course uses ML:

• Gives us time to build knowledge before “starting over”

• But need to get comfortable with the basics as soon as possible

• “Let go of Java” for now (we will return to it)

Dan Grossman CSE341 Winter 2008, Lecture 1 8



'

&

$

%

A strange environment

The ML part of the course uses:

• The emacs editor

• A read-eval-print loop for evaluating programs

• Available on Windows and UNIX in the lab, and remotely via

UNIX

We have prepared “getting started” materials, but leave plenty of time

for the content of homework 1.

• Read the materials

• Then ask questions fast (wasted hours are wasted hours)

Adjusting to new environments is a “CS life skill”

Dan Grossman CSE341 Winter 2008, Lecture 1 9



'

&

$

%

Before we dive in, part 1

We’ll return to the course goals and “why learn something other than

C/C++/Java/Perl” at the end of next week.

(There are many great reasons, too important for the first day.)

Dan Grossman CSE341 Winter 2008, Lecture 1 10



'

&

$

%

Before we dive in, part 2

Scheduling note:

• Unfortunately, Ben and I need to be out of town from Wednesday

afternoon until Sunday (this week only).

• We will have lecture; Prof. Alan Borning will cover Friday.

– (Has taught 341 ≥ 8 times.)

• We will not have section this week.

– Use the time to “get started” in the lab.

• I’ll be in the time zone and should be fairly responsive to email.

Dan Grossman CSE341 Winter 2008, Lecture 1 11



'

&

$

%

ML, from the beginning

• A program is a sequence of bindings

• One kind of binding is a variable binding

val x = e ; (semicolon optional in a file)

• A program is evaluated by evaluating the bindings in order

• A variable binding is evaluated by:

– Evaluating the expression in the environment created by the

previous bindings. This produces a value.

– Extending the (top-level) environment to bind the variable to

the value.

Much easier to understand with an example...

Dan Grossman CSE341 Winter 2008, Lecture 1 12



'

&

$

%

That was a lot at once

• Values so far: integers, true, false, ()

• Non-value expressions so far: addition, subtraction, less than,

conditionals

• Types: every expression has a type. So far, int, bool, unit

• The read-eval-print loop:

– Enter a sequence of bindings. For each, it tells you the value

and type of the new binding

– If you just enter e;, then that is the same as val it = e;

– use "foo.sml" enters the bindings from a file, and then binds

it to (), which has type unit

– Expressions that don’t type-check lead to (bad) error messages

and no change to the environment

Dan Grossman CSE341 Winter 2008, Lecture 1 13



'

&

$

%

Parts worth repeating

Our very simple program demonstrates many critical language

concepts:

• Expressions have a syntax (written form)

– E.g.: A constant integer is written as a digit-sequence

– E.g.: Addition expression is written e1 + e2

• Expressions have types given their context

– E.g.: In any context, an integer has type int

– E.g.: If e1 and e2 have type int in the current context, then

e1+e2 has type int

• Expressions evaluate to values given their environment

– E.g.: In any environment, an integer evaluates to itself

– E.g.: If e1 and e2 evaluate to c1 and c2 in the current

environment, then e1+e2 evaluates to the sum of c1 and c2

Dan Grossman CSE341 Winter 2008, Lecture 1 14



'

&

$

%

More expression forms

What are the syntax-rules, typing-rules, and evaluation-rules for:

• variables

• less-than comparisons

• conditional expressions

Dan Grossman CSE341 Winter 2008, Lecture 1 15



'

&

$

%

Lots more to do

We have many more types, expression forms, and binding forms to

learn before we can write “anything interesting”.

Must develop resilience to mistakes and bad messages. Example

gotcha: x = 7 instead of val x = 7.

For homework 1: functions, pairs, conditionals, lists, options, and local

bindings (earlier problems require less)

But there are some things we will not add:

• mutation (a.k.a. assignment): changing the value of an

environment binding

– make a new binding instead

• statements: expressions will do just fine, thank you

• loop-constructs: recursive functions are more powerful

Dan Grossman CSE341 Winter 2008, Lecture 1 16



'

&

$

%

What is a programming language?

Here are separable concepts for defining and learning a language:

• syntax: how do you write the various parts of the language?

• semantics: what do programs mean? (One way to answer: what

are the evaluation rules?)

• idioms: how do you typically use the language to express

computations?

• libraries: does the language provide “standard” facilities such as

file-access, hashtables, etc.? How?

• tools: what is available for manipulating programs in the

language? (e.g., compiler, debugger, REP-loop)

Dan Grossman CSE341 Winter 2008, Lecture 1 17


