CSE 341, Spring 2008, Lecture 8 Summary

Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of
all the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

So far our uses of higher-order functions (i.e., functions taking or returning other functions) have used
closed functions, meaning functions that only used variables that were arguments or defined inside the
function. It is extremely powerful to let functions use variables that are in scope (i.e., in the environment)
where the function was defined.

To understand how this works, realize that functions are values, but they are not just the code. They
are really a pair (not ML pairs, but still something with two parts): The code and the environment that was
current when the function was defined. We call this pair a function closure or just a closure. Before seeing
why this is a good idea, it is worth going through several useless examples carefully. Consider:

val x = 1
fun f y=x+y
val x = 2
val y = 3
val z = £ (x+y)

When f is defined, the environment binds x to 1, so f is the increment function no matter where it is used. In
the later expression £ (x+y), we evaluate f to the closure that has the code fn y => x+y and environment
mapping x to 1. We evaluate the x+y at the call-site to 5 (since in the environment at the call-site x maps
to 2 and y maps to 3) then execute the function body x+y in the environment with x mapping to 1 extended
to map y to 5. So z ends up bound to 6.

Closures are more interesting and useful when they are created inside a function and the free variables
(variables used but not defined in the function) refer to local bindings. For example:

fun f y = let val x = 2 in fn z => x + y + z end

This function returns a closure with code fn x => x + y +z and an environment mapping x to 2 and y to
whatever the caller to f passed for y. So £ 6 would produce a closure that (when called later) always add 8
to its argument and £ ~1 would produce a closure that increments its argument.

This definition of closure is also important when passing a function to another function. For example,
consider:

fun f g = let val x = 3 in g 2 end
val x = 4

fun hy=x+y

val z =f h

This code binds 6 to z because the closure passed to £ always adds 4 to its argument. That is bedcause
we evaluate the body of h in the environment where h is defined (which here maps x to 4), not where the
function is later called (in the body of £ where there happens to be a different x bound to 3).

The rule that free variables in a function refer to the value they have in the environment where the
function is defined is called lexical scope. The natural alternative — using the environment where the
function is called — is called dynamic scope. There are several reasons to prefer lexical scope for variables.
For example, under dynamic scope this code would try to call “the function 37”7 which makes no sense:

fun f x = x
fungy==fy
val £ = 37

val x = g 14

More generally, type-checking relies pretty fundamentally on lexical scope. However, the issue is not just
type-checking. The good thing about lexical scope is that functions behave the same way no matter where



they are used. So you can reason about and test a function without worrying about the environment being
different at some place where it is called.

For the rest of this lecture and the next lecture, we will consider six different idioms where using function
closures is elegant and helpful. Using closures, which often involves these idioms, and avoiding mutation are
the essentials of programming in a functional style.

Creating similar functions

If we need multiple functions that differ in some small way, we can write a function that given an argument
returns an appropriate function. In this silly but small example, the addn function returns a function that
adds n to its argument, which we can then use to make any number of different adding functions. Crucially,
the function fn m => n+m uses the n in the environment where it was defined:

val addn = fn n => fn m => n+m
val increment = addn 1
val add_two = addn 2
fun f n =
if n=0
then []
else (addn n)::(f (n-1))

Combining functions

When we program with lots of functions, it is useful to create new functions that are just combinations
of other functions. You have probably done similar things in mathematics, such as when you compose two
functions. For example, here is a function that does exactly function composition:

fun compose (f,g) = fn x => £ (g x)

It takes two functions £ and g and returns a function that applies its argument to g and makes that the
argument to f. Crucially, the code fn x => £ (g x) uses the £ and g in the environment where it was
defined. Notice the type of compose is (’a => ’b) * (’c -> ’a) -> ’c -> ’b. Recall it is common (but
not always the case) that higher-order functions have polymorphic types (types with ’a etc. in them, the
topic of lecture 10).

A second similar example uses h as a “back-up” function in case g returns NONE:

fun f (g,h) = fn x => case g x of NONE => h x | SOME y => y

If you are doing this sort of thing often (“if one thing is NONE try another thing”), abstracting it into a helper
function that takes other functions can be helpful.

Passing functions with private data to iterators

Perhaps the most common and important use of closures is passing them to functions that recurse over
data structures, like the map function we saw in the previous lecture:

fun map (f,1st) =
case lst of
0=10
| fst::rest => (f fst)::(map(f,rest))

All our examples last time passed functions for f that only used their arguments; passing closures that
use free variables is much more powerful. For example, this use of map truncates values to be less than some
value:

fun truncate (1st,hi) = map((fn x => if x > hi then hi else x), lst)



Another higher-order function over lists that is even more powerful than map is fold:

fun fold (f,acc,l) =
case 1 of
0 => acc
| hd::tl => fold (f, f(acc,hd), tl)

fold takes an “initial answer” acc and uses £ to “combine” acc and the first element of the list, using this
as the new “initial answer” for “folding” over the rest of the list. We can use fold to take care of iterating
over a list while we provide some function that expresses how to combine elements. For example, to sum the
elements in a list 1st, we can do:

fold ((fn (x,y) => x+y), 0, 1lst)

As with map, much of fold’s power comes from clients passing closures that can have “private fields” (in the
form of free variables) for keeping data they want to consult. Similar to the truncate example, we could
count how many elements are too large:

fun num_too_big(lst,hi) = fold((fn (x,y) => if y > hi then x+1 else x),0,lst)

This pattern of splitting the recursive traversal (fold or map) from the data-processing done on the
elements (the closures passed in) is fundamental. In our examples, both parts are so easy we could just
do the whole thing together in a few simple lines. More generally, we may have a very complicated set of
data structures to traverse or we may have very involved data processing to do. It is good to separate these
concerns so that the programming problems can be solved separately.

While functional programmers have been doing this for decades, it has recently gained much attention
thanks to Google’s MapReduce (and similar systems from other companies and open-source projects). This
work was first done in about 2004 by people very familiar with languages like Scheme and ML and it is
revolutionizing how large-scale data-intensive computations are done.

In a nutshell, a company like Google has so much data that it is spread across thousands or tens of thou-
sands of computers and organized in a very complicated way. So one set of people works on writing functions
like map and fold (a function pretty similar to fold is called reduce) that does all the communication and
data-passing for the huge set of computers. There are also many complicated different things you might
want to do with this data — handle search queries, look for patterns in news reporting, do spell-checking,
etc. These can all be written just in terms of functions passed to map and reduce without any concern for
how the computation is spread across the computers.

It turns out to be crucial that the functions passed to map and reduce do not do mutation such as
assigning to some global variable. The MapReduce system assumes that some function f can be called on
some argument x any number of times and it will always return the same answer and not have any affect
on the state of any other variables. This is essential because when you have ten-thousand computers, one
or more of them are likely to fail pretty often. When a computer fails, the system can just repeat any
computation it did on a different computer since the lack of mutation ensures that it makes absolutely no
difference what order the data is processed or how many times it is processed.

In summary, MapReduce boils down to 3 concepts:

e Building a fault-tolerant distributed system
e Using higher-order functions to provide a simple interface for the programmers doing the data-processing

e Avoiding mutation so that computations can be repeated and reordered by the system without affecting
the result

This course has had a lot to say about 2 of these 3; the other we will not go anywhere near.



