
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2008

Lecture 7— Functions taking/returning functions

Dan Grossman CSE341 Spring 2008, Lecture 7 1



'

&

$

%

Today

• Course motivation/overview

• Begin first-class functions

Dan Grossman CSE341 Spring 2008, Lecture 7 2



'

&

$

%

Why these 3?

dynamically typed statically typed

functional Scheme SML

object-oriented Ruby Java

• ML: polymorphic types complementary to OO-style subtyping, rich

module system for abstract types, and rich pattern-matching.

• Scheme: dynamic typing, “good” macros, fascinating control

operators (may skip), and a minimalist design.

• Ruby: classes but not types, a more complete commitment to OO,

mixins.

Runners-up: Haskell (laziness & purity), Prolog (unification &

backtracking), Smalltalk (even more OO than Ruby), ...

Dan Grossman CSE341 Spring 2008, Lecture 7 3



'

&

$

%

Are these useful?

The way we use ML/Scheme/Ruby in 341 can make them seem almost

“silly” precisely because we focus on interesting language concepts

“Real” programming needs file I/O, string operations, floating-point,

graphics libraries, project managers, unit testers, threads,

foreign-function interfaces, ...

• These languages have all that and more!

• If I used Java in 341, Java would seem “silly” too

Dan Grossman CSE341 Spring 2008, Lecture 7 4



'

&

$

%

First-Class Functions

• Functions are values.

(Variables in the environment are bound to them.)

• We can pass functions to other functions.

– Factor common parts and abstract different parts.

• Most polymorphic functions take functions as arguments.

– Non-example: fun f x = (x,2,x)

• Some functions taking functions are not polymorphic.

Dan Grossman CSE341 Spring 2008, Lecture 7 5



'

&

$

%

Type Inference and Polymorphism

ML can infer function types based on function bodies. Possibilities:

• The argument/result must be one specific type.

• The argument/result can be any type, but may have to be the

same type as other parts of argument/result.

• “equality types” (see last week’s section)

We will study this parametric polymorphism more later.

Without it, ML would be a pain

(e.g., a different list library for every list-element type).

Fascinating: If f:int->int, there are lots of values f could return. If

f:’a->’a, whenever f returns, it returns its argument!

Dan Grossman CSE341 Spring 2008, Lecture 7 6



'

&

$

%

Anonymous Functions

As usual, we can write functions anywhere we write expressions.

• We already could:

(let fun f x = e in f end)

• Here is a more concise way (better style when possible):

(fn x => e)

• Cannot do this for recursive functions (why?)

Dan Grossman CSE341 Spring 2008, Lecture 7 7



'

&

$

%

Returning Functions

Syntax note: -> “associates to the right”

• t1->t2->t3 means t1->(t2->t3)

Again, there is nothing new here.

The key question: What about free variables in a function value?

What environment do we use to evaluate them?

Are such free variables useful?

You must understand the answers to move beyond being a novice

programmer.

Dan Grossman CSE341 Spring 2008, Lecture 7 8


