
CSE 341, Spring 2008, Lecture 11 Summary
Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of

all the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

The end of lecture 10 described the basics of structures and signatures for separating different parts of
our programs. Today we will use a larger example to discuss the advantages of using signatures that hide
information about the structure.

Before discussing ML modules, let’s notice that hiding implementation details is one of the most important
concepts when developing software. We can already do this with functions. For example, all 3 of these
functions double their argument, and clients (i.e., callers) would have no way to tell if we replaced one of
the functions with a different one:

fun double1 x = x + x
fun double2 x = x * 2
val y = 2
fun double3 x = x * y

From an engineering perspective, this is a crucial separation of concerns. I can work on improving the
implementation of a function and know that I am not breaking any clients. Conversely, nothing clients can
do can break how the functions above work.

We would like to have these advantages for whole structures. The key is using signatures to do one or
both of the following:

• Make certain bindings inaccessible

• Make types abstract (reveal that a type exists, but do not reveal its implementation)

These techniques help us replace a module implementation with another one without clients being able to
tell. They also let us enforce invariants about arguments to our functions since abstract types can ensure
that values are only created by functions defined within the module.

To see all this, we will consider an extended example. Here is a small library for positive, rational
numbers. A positive rational number is a fraction where the numerator and denominator are both greater
than 0. We have functions for creating rationals, adding two rationals, and converting a rational to a string.
Of course, a real library would have many more functions, but this will suffice for us:

structure PosRat1 =
struct
datatype rational = Whole of int | Frac of int*int
exception BadFrac

fun gcd (x,y) =
if x=y
then x
else if x < y
then gcd(x,y-x)
else gcd(y,x)

fun reduce r =
case r of

Whole _ => r
| Frac(x,y) =>
let val d = gcd(x,y) in

if d=y
then Whole(x div d)
else Frac(x div d, y div d)

1



end

fun make_frac (x,y) =
if x <= 0 orelse y <= 0
then raise BadFrac
else reduce (Frac(x,y))

fun add (r1,r2) =
case (r1,r2) of

(Whole(i),Whole(j)) => Whole(i+j)
| (Whole(i),Frac(j,k)) => Frac(j+k*i,k)
| (Frac(j,k),Whole(i)) => Frac(j+k*i,k)
| (Frac(a,b),Frac(c,d)) => reduce (Frac(a*d + b*c, b*d))

fun toString r =
case r of

Whole i => Int.toString i
| Frac(a,b) => (Int.toString a) ^ "/" ^ (Int.toString b)

end

The code as written makes several assumptions, which should at least be documented in comments:

• gcd and reduce are really local helper functions for putting rationals into reduced form (e.g., Frac(1,2)
instead of Frac(2,4) and Whole 7 instead of Frac(21,3)). We do not want clients calling them since
we do not want to be responsible for maintaining their behavior. Moreover, they do not work for
negative numbers, so we definitely don’t want clients thinking they do.

• make_frac will reject non-positive numbers. Therefore, if all rationals are created via make_frac
and add, then all rationals will always be positive. Since reduce assumes this, that is an important
invariant. To ensure it holds, clients should not use the Whole and Frac constructors directly; they
should always call make_frac.

• Similarly, we keep all rationals in reduced form. Thanks to this invariant, toString will never return
"4/2" or "21/3", but again a client that creates its own rationals could break this property, e.g., with
PosRat1.toString(Frac(21,3)).

A signature that simply described all the bindings in this structure would look like this:

signature RATIONAL_ALL =
sig
datatype rational = Frac of int * int | Whole of int
exception BadFrac
val gcd : int * int -> int
val reduce : rational -> rational
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string
end

If we give this signature to the structure (by starting it with structure PosRat1 :> RATIONAL_ALL,
ML will check that all the types are right, but clients will still be able to do whatever they want with the
constructors, exception, and functions we defined.

A more restrictive signature could hide the bindings that we do not want clients to know about. This
effectively makes them private. Unlike in Java, we do this just via the signature, we do not have to change
the structure body at all. We define:

2



signature RATIONAL_A =
sig
datatype rational = Frac of int * int | Whole of int
exception BadFrac
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string
end

and change the first line of the structure to structure PosRat1 :> RATIONAL_A.
This signature ensures clients do not call gcd or reduce (or have any idea they exist), so we could change

the structure definition in various ways (such as changing their names) and we can feel better about having
them fail with negative numbers. But we still have the problem that clients can create bad rationals directly
(bypassing make_frac). The way to fix this is to remove the datatype binding as well! But that does not
quite work because our signature mentions the type rational and if we remove the datatype beinding that
type name will make no sense.

So what we want is a way to say that there is a type rational but clients cannot know anything about
what the type is other than it exists. This is an abstract type, and it is a very powerful concept for letting
programmers write libraries that have to be used in particular ways. Here is the appropriate signature:

signature RATIONAL_B =
sig
type rational (* type now abstract *)
exception BadFrac
val make_frac : int * int -> rational
val add : rational * rational -> rational
val toString : rational -> string
end

(Of course, we also have to change the first line of the structure definition. That is always true, so we will
stop mentioning it.)

The syntax is just to give a type binding without a definition. Now, how can clients make rationals?
Well, the first one will have to be made with make_frac. After that, more rationals can be made with
make_frac or add. There is no other way, so thanks to the way we wrote make_frac and add, all rationals
will always be in reduced form.

What RATIONAL_B took away from clients compared to RATIONAL_A is the constructors Frac and Whole.
So clients cannot be rationals directly and they cannot pattern-match on rationals. They have no idea how
they are represented internally.

ML lets us do one more slightly fancy thing if we want. RATIONAL_B enforces the invariants we want
but it makes it a little unpleasant to make rationals that are whole numbers since clients have to call
make_frac(6,1). We could add a function to our structure like this:

fun make_whole x = Whole x

and a line to our signature like this:

val make_whole : int -> rational

But the make_whole function is an unnecessary wrapper just like if e then true else false. The con-
structor Whole is already a function that takes an int and returns a rational just like we want. So instead
we can make no change to the structure and instead just add to our signature:

val Whole : int -> rational

This makes sense because constructors are two things: functions that create values of the datatype and
things you can use in patterns. This addition to our signature just exposes one of the two — clients know
Whole is a function, but they do not know it is a constructor.

We can now consider in general, what it means for a structure Name to be a legal implementation of the
signature BLAH:

3



• It must define all bindings mentioned in BLAH (and it can define more).

• The types of the bindings in Name must match those in BLAH, but they can be more general (e.g., the
implementation can be polymorphic even if the signature says it is not — an example comes later).

• Types can be made abstract.

So far, our more restrictive signatures for PosRat1 have succeeded in ensuring clients: (1) do not create
non-positive rationals, (2) do not create non-reduced rationals, (3) do not pass bad arguments to gcd
or reduce. Now we can consider the other advantage of restrictive signatures: we can change structure
implementations and know that client behavior cannot change.

As a simple example, we could make gcd a local function defined inside of reduce and know that no
client will fail to work since they could not rely on gcd’s existence. More interestingly, let’s change one of
the invariants of our structure. Let’s not keep rationals in reduced form. Instead, let’s just reduce a rational
right before we convert it to a string. This simplifies make_frac and add, while complicating toString,
which is now the only function that needs reduce. Here is the whole structure:

structure PosRat2 :> RATIONAL_A (*or B or C*) =
struct
datatype rational = Whole of int | Frac of int*int
exception BadFrac

fun make_frac (x,y) =
if x <= 0 orelse y <= 0
then raise BadFrac
else Frac(x,y)

fun add (r1,r2) =
case (r1,r2) of

(Whole(i),Whole(j)) => Whole(i+j)
| (Whole(i),Frac(j,k)) => Frac(j+k*i,k)
| (Frac(j,k),Whole(i)) => Frac(j+k*i,k)
| (Frac(a,b),Frac(c,d)) => Frac(a*d + b*c, b*d)

fun toString r =
let fun gcd (x,y) =

if x=y
then x
else if x < y
then gcd(x,y-x)
else gcd(y,x)

fun reduce r =
case r of

Whole _ => r
| Frac(x,y) =>
let val d = gcd(x,y) in

if d=y
then Whole(x div d)
else Frac(x div d, y div d)

end
in

case reduce r of
Whole i => Int.toString i

| Frac(a,b) => (Int.toString a) ^ "/" ^ (Int.toString b)

4



end
end

Notice the following:

• PosRat2 does not have signature RATIONAL_ALL because it does not define gcd or reduce (they are
local to toString).

• While PosRat2 does have signature RATIONAL_A, if we give PosRat1 and PosRat2 these signatures,
clients can tell the difference!. For example, PosRat1.toString(Frac(21,3) returns "21/3" but
PosRat2.toString(Frac(21,3) returns "7". So this signature is not restrictive enough to ensure
changing PosRat1 to PosRat2 will not change client behavior.

• RATIONAL_B and RATIONAL_C are restrictive enough to ensure the two structures are totally equivalent
for any possible client.

While our two structures so far maintain different invariants, they do use the same definition for the type
rational. This is not necessary with signatures RATIONAL_B or RATIONAL_C; a different structure having
these signatures could implement the type differently. For example, suppose we realize that special-casing
whole-numbers internally is more trouble than it is worth. We could instead just use int*int and define
this structure:

structure PosRat3 :> RATIONAL_B =
struct

type rational = int*int
exception BadFrac

fun make_frac z =
let val (x,y) = z in

if x <= 0 orelse y <= 0
then raise BadFrac
else z

end

fun add ((a,b),(c,d)) = (a*d + c*b, b*d)

fun toString (x,y) =
let fun gcd (x,y) =

if x=y
then x
else if x < y
then gcd(x,y-x)
else gcd(y,x)

val d = gcd (x,y)
val num = x div d
val denom = y div d

in
Int.toString num ^ (if denom=1

then ""
else "/" ^ (Int.toString denom))

end
end

(This structure takes the PosRat2 approach of having toString reduce fractions, but that issue is largely
orthogonal from the definition of rational.)

5



Notice that this structure provides everything RATIONAL_B requires. The function make_frac is interest-
ing in that it is the identity function unless it raises an exception, but clients do not know that since they
cannot tell that rational is int*int. They cannot pass just any int*int to add or toString; they must
pass something that they know has type rational. As with our other structures, that means rationals are
created only by make_frac and add, ensuring that all rationals are positive. Our structure does not match
RATIONAL_A since it does not provide rational as a datatype with constructors Frac and Whole.

Also notice that our structure as defined does not have signature RATIONAL_C because there is no Whole
function. But we could easily add one – all we need is a function of type int->rational that has the
behavior we want:

fun Whole i = (i,1)

No client can distinguish our “real function” from the previous structures’ use of the Whole constructor as
a function.

Finally, suppose we had written make_frac like this:

fun make_frac x = x

This does not enforce our invariant that forbids non-positive numbers, but it does still match signatures
RATIONAL_B and RATIONAL_C. That is intersting because within the module, make_frac has type ’a->’a,
but outside it has type int*int -> rational. Our previous version above passed signature matching
because internally it had type int*int -> int*int and rational=int*int. The polymorphic version also
matches because we are allowed to specialize polymorphic functions when doing signature matching. So the
type-checker figures out that to match int*int -> rational against ’a->’a it need to first replace ’a with
int*int and then use the definition rational=int*int. Less formally, the fact that make_frac could have
a polymorphic type does not mean the singature has to give it one.

6


