CSE341 Spring 07 Due Friday, April 27
Assignment 2

For this homework your solutions must use pattern-matching. Avoid the functions hd, t1, null
or anything containing the # character. Similarly, don’t use if-then-else in places where pattern
matching will suffice (although there are a small number of places where you will need if-then-else).
Don’t include types in function declarations unless necessary; ML’s type inference should suffice
in nearly all cases. Use curried functions in preference to tuple parameters unless there’s a good
reason not to.

1. In the following we will represent sets as lists.

(a) Consider the following.

Control.Print.printDepth := 99; (* deep structs for debugging. yes, := %)
infix mem
fun x mem [] = false
| x mem (y::ys) = x=y orelse X mem ys
fun addmem x xs = if (x mem xs) then xs else x::xs

Type or copy these and include them in your turn-in. (“Infix” is explained in section
9.1.4.) In a comment near these functions, answer the following.

What is the result of addmem 2 [1,2]7

Of addmem "apple" ["orange",'"banana"]?

Of addmem "apple"?

Describe in your own words what these functions do, using only one sentence for each
function.

(b) Write a function remmem that (if necessary) removes its first argument from the list given
by its second argument. E.g., remmem "doubt" ["no", "doubt"] should return ["no"].

(c) Write a function setof that takes a list of items, possibly with duplicates, and returns
a list with all the duplicates removed. For example, setof [1,2,3,2] --> [1,2,3].
Hint: use addmem. The order of items in the output list doesn’t matter.

(d) Write an infix function union that computes the union of two lists of items when viewed
as sets. [1,2,3] union [2,3,4] evaluates to [1,2,3,4] (perhaps in a different order).

(e) What is the main advantage of not declaring the argument types of these functions?
Include the answer as a comment after your definition of union.

(f) Write a (non-infix) function isect_1 that computes the intersection of two lists of items
when viewed as sets. E.g., isect_1([1,2,3], [2,3,4]) --> [2,3] (or [3,2]).

(g) Is your isect_1 function tail-recursive? Explain why or why not in another comment.
Then write an alternate version of it named isect_2 that is tail recursive if isect_1 is
not, or vice versa. (“Accumulator style” might be useful for one or the other of them.)
In another comment, give an example (executable code) where the output order differs
between the two functions, or explain why they are always the same.

(h) Use foldl or foldr to write isect_folded, a (non-recursive) 3rd version of set intersec-
tion.

(i) Use List.filter to write isect_filtered, a 4th version of intersection, also non-
recursive.



(j) Bind your favorite of the above 4 versions of intersection to the name isect. In a nearby
comment say why you think this is the “best” of the 4 ways to write it, in terms of
simplicity and clarity of the code. (A few sentences, at most.)

2. In the rest of this assignment we’ll look at Boolean expressions, such as:

true and (false or not false)
not x and (true or x)

For extra precision, I'm going to rewrite this in a more (but not fully) ML-ish syntax as:

And(T,0x (F,Not(F)))
And (Not (x),0r(T,x))

Because the first expression contains only the constants true/T and false/F, we say it is an
expression over constants. It evaluates to true. The second expression contains a variable x;
we have to bind a value to x before we can evaluate the expression. We say that x is free in
the expression. We can bind free variables to constants; for example binding x to true in the
expression And (Not (x),0r(T,x)) gives And (Not (T) ,0r(T,T)), which evaluates to false. If
we bound x to false, the expression would evaluate to true.

For many applications it is useful to introduce bindings directly into the Boolean expressions
in the form of “universal” (V, “for all”) and “existential” (3, “there exist”) quantifiers. For
example, the quantified Boolean expression below expresses the (true) assertion that for every
possible binding of x to a Boolean constant, either x or its negation must be true.

A11(x,0r(x,Not(x)))

With quantified Boolean formulas, it’s important to understand the notions of free versus
bound variables and scope of quantifiers. Specifically, the first parameter of A1l and Exist
give the variable being bound, and the scope of that binding is the entirety of its second
parameter, ezxcluding the scope of any nested quantifier using the same variable name. For
example, in the following:

And(x,A11(x,0r(x,Exist(y,0r(x,0r(y,Exist (x,0r (Not(x),2))))))))

the z and the first x are free variables, the middle two x’s are bound by the A11 x quantifier,
and the last x is bound by the Exist x quantifier. Just as with scope of variable names in
most programming languages, the inner Exist x doesn’t conflict with the outer All x, it
just supercedes it throughout the inner scope. E.g., if we replace Exist (x,0r (Not (x),2z)) by
Exist (w,0r (Not (w),z)), the meaning is the same.

We say that an expression is constant if it contains no free variables. A constant expression
can be evaluated without having to bind anything (other than the bindings implicit in any
quantifiers within the formula).

As with ML itself, we can speak of an environment as a set of bindings, or equivalently as a
mapping from variable names to Boolean values. I define an assignment for an expression e
to be an environment in which all of e’s free variables, and only its free variables, are bound.
If e has n > 0 free variables, it will have exactly 2™ assignments. An assignment is a satisfying
assignment if the formula is true given that binding, and an expression is satisfiable if it has
at least one satisfying assignment. The last formula above is satisfied, (e.g. by the assignment
[(x,T), (z,F)], hence is satisfiable.

To represent quantified Boolean expressions in ML, we will use the following data type.



datatype expr = Const of bool
| Var of string

| Not of expr

| And of expr * expr

| Or of expr * expr

| A1l  of string * expr
| Exist of string * expr
exception UnboundVar

Thus, the ML expression And (Not (Var "x"),0r(Const true, Var "x")) is the same as the
second example above. (But note that defining

val T = Const true
val F = Const false
val x = Var "x"

makes And (Not(x),0r(T,x)) equivalent to this, which may be a convenient shorthand for
generating your test cases. Also note that All/Exist take stringxexpr, not expr*expr; i.e.,
you need quotes around the first but not the second x in A11("x",0r(T,x)), even after giving
the 3 shorthand val bindings.)

(a) Write a function free_vars that takes an expression and returns a string list of its
free variables. Variables should not be repeated even if they appear multiple times, but
order is irrelevant; use the set functions above. You might want to review the “exp” example in lecture

”»

4. (But now that you know more about pattern matching, you could do the ”eval” function much more elegantly than

given there, couldn’t you?)

(b) As above, we will represent an environment by a (string * bool) list. Write a func-
tion getenv x env that will return the binding of variable x in environment env. E.g.,
getenv "z" [("x",true),("z",false),("z",true)]) --> false. (Having newer bind-
ings, nearer the front of the list, hide older ones is a natural implementation; no need to
remove them.) Raise an UnboundVar exception if x is not bound in env.

(c) Write a function eval f env that takes an expression f and an environment env and
evaluates the expression in that environment. If the formula’s value depends on free
variables unbound in env, it should raise an UnboundVar exception.

Note: a natural way to solve this problem will evaluate Or (Const true,Var "x") as true
even if x is unbound. That’s okay. The same solution will raise an exception if passed
Or(Var "x",Const true), even though it’s equivalent to the previous one. That’s okay
too. Alternatively, it’s okay if you raise an exception in both cases. The point of this
problem is to get practice in evaluating things, not figuring out the type of an expression.

(d) There are several kinds of manipulations that we might want to do to Boolean expres-
sions. For starters, write a function fix1 that takes a variable, a Boolean value and an
expression, and returns an expression with all free instances of that variable fixed to the
given truth value. It should be a curried function. For example,

fixl "x" true (And(Var "x", Or(All("x", Var "x"), Var "x")))

--> And(Const true, Or(All("x", Var "x"), Const true))
fixl "x" true (And(Var "z", Or(Var "y", Var "z")))

-=> And(Var "z", Or(Var "y", Var "z"))



(e) fix1 is nice, but not very general. For example, we couldn’t use it to change some variable
in an expression to a different variable or sub-expression, or to swap the names of two
free variables. Write a function fix that takes a function fixer and an expression e,
applies fixer to the argument of each free Var in e, and leaves the rest of the expression
unchanged. fixer should take the value from a Var and return an expression. (Hint
this one is a little more subtle than fix1. E.g., fixer might want to change both x and
y, but inside e of A1l(x,e), any y’s should still be changed, but no x’s. How will you
keep track?)

Then write functions fixvar, changevar and swapvar using fix so that fixvar is equiv-
alent to fix1, changevar is similar except that variables are changed, and swapvar in-
terchanges two variable names. For example,

fixvar "x" true (And(Var "x",0r(All("x",And(Var "x",Var "y")), Var "x")))

--> And (Comnst true,Or (All ("x",And (Var "x",Var "y")),Const true))
changevar "x" "help" (And(Var "x",Or(A11("x",And(Var "x",Var "y")), Var "x")))

--> And (Var "help",Or (A1l ("x",And (Var "x",Var "y")),Var "help"))
swapvar "x" "y" (And(Var "x",Or(Var "x",Var "y")));

-=> And (Var "y",0r (Var "y",Var "x"))

(f) swapvar only changes free variables. Or does it? In a comment after these definitions,
give an example (executable code) of a case where the result of applying swapvar to a
formula f has fewer free variables than f does. This is known as capture.

(g) Write a function satisfying assignments that takes an expression and returns a (string
* bool) list list of all satisfying assignments, if any exist. For example,

satisfying_assignments (And(Not(Var "x"),Or(Const true, Var "x")))
-—> [[("x",false)]]

satisfying_assignments (And(Not(Var "x"),Or(Const false, Var "x")))
--> nil

satisfying_assignments (Or(Var "x", Var "y"))
-—> [[("x",true), ("y",true)], [("x",true), ("y",false)],

[("x",false), ("y",true)]]

satisfying_assignments (And(Not(Var "x"),Exist("y",Or(Var "y",Var "x"))))
-—> [[("x",false)]]

satisfying assignments (Const true)
-—> [[]]

satisfying_assignments (Const false)

-—> [

Hint: write a local function that takes a list of free variables and an environment. If the
list is empty, evaluate the expression in that environment; otherwise recurse, extending
the environment with a new binding and using @ (append) to collect resulting satisfying
assignments. My implementation is about 8 lines.

There’s not that much code to write—under 100 lines in my solution—but they require careful
thought. Start early. Don’t just settle for your first answer. Revise, experiment, play with it.

Extra Credit

The following is not too difficult and strongly recommended as additional practice with functions.
Make liberal use of map, fold, curry, compose, etc. No recursion (or loops) allowed. Extra challenge:



it’s not really good style, but try to define your function in one (somewhat long) line.

Suppose you are given a Boolean formula £ together with an environment pay binding its free
variables z; to ints p;, reflecting payoffs: setting x; to true earns p; dollars; setting it to false costs
—p; dollars. Write a function maxpay f payoff which will find the total value of £’s highest-paying
satisfying assignment.

Type Bindings

Your solution should generate the following bindings (or their synonyms).

infix mem union

val mem = fn : ’’a *x ’’a list -> bool

val addmem = fn : ’’a -> ’’a list -> ’’a list
val remmem = fn : ’’a -> ’’a list -> ’’a list
val setof = fn : ’’a list -> ’’a list

val union = fn : ’’a list * ’’a list -> ’’a list
val isect = fn : ’’a list * ’’a list -> ’’a list

datatype expr
= A1l of string * expr
| And of expr * expr
| Const of bool
| Exist of string * expr
| Not of expr
| Or of expr * expr
| Var of string
exception UnboundVar
val free_vars = fn : expr -> string list
val fixl = fn : string —-> bool -> expr -> expr
val fix = fn : (string -> expr) —-> expr -> expr
val fixvar = fn : string -> bool -> expr -> expr
val changevar = fn : string -> string -> expr -> expr
val swapvar = fn : string -> string -> expr —-> expr
val getenv = fn : ’’a -> (°’a * ’b) list -> °’b
val eval = fn : expr -> (string * bool) list -> bool
val satisfying_assignments = fn : expr -> (string * bool) list list
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