
CSE 341 Midterm Exam February 13, 2006 Page 1 of 6 
 Sample Solution 

Question 1. (9 points)  What are the types of the following function definitions? 
 
(a)  fun pick x y = y 
     
  ′a -> ′b -> ′b 
 
(b)  fun pr f x y = f(x,y) 
    
  (′a * ′b -> ′c) -> ′a -> ′b -> ′c 
 
(c)  fun fpair z = pr(z)  (* pr defined in part (b) *) 
 
  (′a * ′b -> ′c) -> ′a -> ′b -> ′c 
 
 
 
Question 2.  (6 points)  Consider the following SML expressions: 
   
 fun g a b = fn x => a(x) + b; 
 val y = 10; 
 val f = g(fn y => y*y) 
 
(a)  What is the type of function g? 
 
  (′a -> int) -> int -> ′a -> int 
 
(b)  What is the type of f? 
 
  int -> int -> int 
 
(c)  What is the result of evaluating f 5 3 ? 
 
  14 
  
 
 
 



CSE 341 Midterm Exam February 13, 2006 Page 2 of 6 
 Sample Solution 

Question 3.  (10 points)  (Hint: you may find it useful – and the graders might get some 
hints if partial credit is needed – if you make some notes about the values and/or bindings 
of the various parts of the following expressions.  But be sure that we can find the 
answers!)  
 
(a)  Consider the following SML expressions:  
 
 val x = 10; 
 fun f y = x * y; 
 fun g z = 
    let 
     val x = 3 
    in 
     f(z) + x     
    end; 
 
What is the value of g 2? 
 
  23 
 
(b)  Consider the following SML expressions: 
 
 fun f x y z = x (y) + z 
 val y = 3 
 fun g z = let  
         val x = fn x => x * 2 
             in 
         f z 
           end 
 val h = g (fn a => a*a) 
 
What is the value of h 5 2? 
 
  27



CSE 341 Midterm Exam February 13, 2006 Page 3 of 6 
 Sample Solution 

Question 4.  (8 points) Write simple recursive function nOdd lst that calculates the 
number of odd integers in the list lst.  For example, nOdd[] should evaluate to 0, 
nOdd[1,2,3,4] is 2, and nOdd[3, 5, 2, 5, 8, 6] is 3.   
 
For full credit your solution must use pattern matching, not the hd and tl functions or 
if-statements.  Also, if your solution involves an auxiliary, or helper function, that 
function should be defined locally in nOdd and not defined externally as a top-level 
function. 
 
You should assume that the list is either empty or contains only positive integer values.  
Your function does not need to be tail-recursive. 
 
  fun nOdd nil = 0 
     |  nOdd (x::xs) = (x mod 2) + nOdd(xs) 
 
 
 
Question 5.  (10 points)  The nth Fibonacci number can be calculated with the following 
recursive function: 
 
 fun fib n = if n < 2 
               then 1 
               else fib(n-1) + fib(n-2) 
 
While it produces the correct answer, this function has the unfortunate property that its 
running time is exponential (O(2n)).  However, a simple iterative function can calculate 
the result in linear time (O(n)). 
 
Write a tail-recursive version of fib that calculates fib n in linear time.  If you define 
any auxiliary (helper) functions as part of your solution, they should be placed inside let 
bindings so they are local to fib and not defined in the global environment. 
 
Hint:  You almost certainly will want an auxiliary function, and you may find it helpful to 
have more than one “accumulator”-like parameter.  (It might help to think about how you 
would solve this problem with a single loop in a language with such constructs.) 
 
Hint:  Don’t worry about the linear time restriction at first.  A simple iterative algorithm 
will likely be linear time once you’ve figured it out. 
 
  fun fib n =  let 
                   fun aux(k, last, prev) = 
          if k >= n 
         then last + prev 
         else aux(k+1, last+prev, last) 
       in 
        aux(2,1,0) 
       end



CSE 341 Midterm Exam February 13, 2006 Page 4 of 6 
 Sample Solution 

Question 6.  (11 points) If you recall from a homework assignment, a tree structure 
containing integer values can be defined in SML with the following type: 
 
 datatype tree = Tree of int * tree * tree 
               | EmptyT 
 
(a) (8 points) Write a function treemap f t that has two parameters: a function f 
whose type is int->int, and a tree t of type tree.  The result of evaluating treemap 
f t should be a new tree that is a copy of the original tree t, except that the int value in 
each node should be calculated by applying the function f to the corresponding node 
value in the original tree.  (In other words, treemap is a map function for trees the same 
way that the standard library map function maps a function onto a list.) 
 
  fun treemap f EmptyT = EmptyT 
   |  treemap f (Tree(x, left, right)) =  
      Tree(f(x), (treemap f left), (treemap f right)) 
 
 
(b) (3 points) Use treemap to define a new function doubletree t that returns a copy 
of the tree t where each node in the original tree has an integer value twice that of the 
corresponding node in the original tree.  You may not define any additional global 
bindings.  Hint: partial application (e.g., Currying) and anonymous functions are both 
useful here. 
 
 val doubletree = treemap (fn x => x+x) 
 



CSE 341 Midterm Exam February 13, 2006 Page 5 of 6 
 Sample Solution 

Question 7.  (8 points)  Although most of the examples we’ve seen of SML structures 
use a signature to specify the type of the structure, this isn’t required.  If we define a 
structure without naming a signature, then we create a set of bindings that contain all of 
the items in the structure.  For example, we might want to create a structure containing 
definitions for complex numbers and associated operations. 
 
 structure cpx = struct 
   type complex = real*real 
   fun make_complex(x,y) = (x,y): complex 
   fun sum((x1,y1), (x2,y2))  = make_complex(x1+x2, y1+y2) 
   fun prod((x1,y1), (x2,y2)) = make_complex(x1*x2-y1*y2, 
                                                   x1*y2+x2*y1) 
   fun recip(x,y) = let val t = x*x + y*y 
                          in  make_complex(x/t, ~y/t) end 
   fun quot(x,y) = prod(x, recip y) 
  end 
 
When SML process this definition, it reports the following inferred signature and types: 
 
 structure cpx : sig 
   val make_complex : (real*real) -> complex 
   val sum          : (real*real) * (real*real) -> complex 
     val prod         : (real*real) * (real*real) -> complex 
   val recip        : real*real -> complex 
   val quot         : (real*real) * (real*real) -> complex 
   type complex = real*real 
  end 
 
Unfortunately, this exposes the representation details of type complex to code that uses 
the structure cpx.  It also exposes all of the functions defined in the structure, even 
though we might prefer to hide some of them that are only part of the implementation.  
We can fix both of these problems by defining an appropriate signature and changing the 
first line of the structure to use that signature (e.g., structure cpx :> complex).  
Complete the definition of signature complex, below, so that when it is implemented by 
structure cpx, the representation details of type complex and the function recip  are 
hidden and not visible outside the structure.  (Function sum is specified for you below to 
get started; you should add specifications for the other public items.) 
 
 signature complex = sig 
 
  type complex 
  val make_complex: real * real -> complex 
  val sum: complex*complex -> complex 
  val prod: complex * complex -> complex 
  val quot: complex * complex -> complex 
 
 end 



CSE 341 Midterm Exam February 13, 2006 Page 6 of 6 
 Sample Solution 

Question 8.  (8 points)  The following two functions evaluate whether some property is 
true of any or all of the items in a list. 
 
 fun exists p  nil   = false 
    |  exists p (a::x) = if p a then true else exists p x 
 
 fun all p  nil   = true 
    |  all p (a::x) = if p a then all p x else false 
 
In other words, exists p lst returns true if p x is true for any item in the list lst, 
and all p lst returns true if p x is true for every item in the list lst.  A few 
examples:   
exists (fn x => x>0) [~1,2,3] evaluates to true,  
exists (fn x => x>0) [~1,~2,~3] evaluates to false;  
all (fn x => x>0) [1,2,3] evaluates to true,  
all (fn x => x>0) [1,2,~3] evaluates to false. 
 
Next, consider the following function: 
 
 fun C x y = (y mod x = 0) 
 
This function returns true if the integer y is a multiple of x and false otherwise.  
Examples: C 1 3 evaluates to true; C 2 3 evaluates to false. 
 
Now use the functions exists, all, and C to write an expression that solves the 
following problem:  Given two lists X and Y that contain integers, return true if there is 
some integer x in list X such that all of the integers in list Y are a multiple of x.  If no such 
integer exists in list X, return false.  You may assume that X and Y are non-empty lists 
containing positive integers. 
 
For full credit, your solution should not contain recursions that directly process the 
elements of X and Y individually – use exists and all and appropriate functional 
parameters. 
 
  exists (fn z => all (C z) Y) X 


