
'

&

$

%

CSE 341:
Programming Languages

Winter 2006

Lecture 26— Static Overloading; Subtype vs. Parametric

Polymorphism; Bounded Quantification

CSE341 Winter 2006, Lecture 26 1

'

&

$

%

Static Overloading

Many OO languages allow methods in the same class to have the same

“name” but different argument types. E.g.:

void show(Window w) ...

void show(DancingBear db) ...

float distTo(Point p) ...

float distTo(3DPoint p) ...

This complicates slightly the semantics of message send. As before,

we:

• Use the class (“run-time type”) of the receiver to pick a method.

• Call the method with the receiver bound to self.

But now there are multiple methods with the same name, so we:

• Use the (compile-time) types of the arguments to pick the “best

match”.

CSE341 Winter 2006, Lecture 26 2

'

&

$

%

A lower-level view
Here’s an equivalent way to think about it:

• A method’s name includes the types of its “formal” arguments

(e.g., show$Window)

• A message send is rewritten with the types of its “actual”

arguments after typechecking (e.g., show(e) becomes

show$Window(e) if e has type Window.

This seems like an “ugly” view, but:

• It’s exactly how static overloading is implemented.

• It means the overloading is really resolved “at compile-time” (long

before e is evaluated).

But... It interacts poorly with contravariant subtyping on method

argument-types, which (possibly) is why Java and C++ use invariant

subtyping there.

CSE341 Winter 2006, Lecture 26 3

'

&

$

%

Static Overloading vs. Multimethods

A very simple difference: Multimethods choose the method at

run-time using the class of the actuals.

Example: e.distTo((Point)(new 3DPoint(3.0,4.0,2.0)))

The same “no best match” errors arise, but with overloading they arise

at compile-time (and can be resolved with explicit subsumption).

CSE341 Winter 2006, Lecture 26 4

'

&

$

%

Static Typing and Code Reuse

Key idea: Scheme and Smalltalk are different but not that different:

• Scheme has arbitrarily nested lexical scope (so does Smalltalk, but

only within a method)

• Smalltalk has subclassing and dynamic dispatch (but easy to code

up what you need in Scheme)

Java and ML are a bit more different:

• ML has datatypes; Java has classes

• The ML default is immutable

• Java does not have first-class functions (but does have anonymous

inner classes)

But the key difference is the type system: Java has subtyping; ML has

parametric polymorphism (e.g., (’a * (’a -> ’b)) -> ’b).

CSE341 Winter 2006, Lecture 26 5

'

&

$

%

What are “forall” types good for?

Some good uses for forall types:

• Combining functions:

(* ((’a->’b)*(’b->’c)) -> (’a->’c) *)

fun compose (f,g) x = g (f x)

• Operating on generic container types:

isempty : (’a list) -> bool

map : ((’a list) * (’a -> ’b)) -> ’b list

• Passing private data (unnecessary with closures):

(* (’a * ((’a * string) -> int)) -> int *)

let f (env, g) =

let val s1 = getString(37)

val s2 = getString(49)

in g(env,s1) + g(env,s2) end

CSE341 Winter 2006, Lecture 26 6

'

&

$

%

What is subtyping good for?

Passing in values with “extra” or “more useful” stuff

//can pass a Pt3D

boolean isXPos(Pt p){ return p.x > 0; }

But in ML, we cannot subsume record types to forget fields. We can

write code that “looks like” explicit casting, but it “coerces” values by

making new values.

end up encoding coercions to supertypes using regular ML functions

that build new values. (See code)

CSE341 Winter 2006, Lecture 26 7

'

&

$

%

What else is subtyping good for?

In addition to adding “public” fields, we can use it for private state:

interface J { int f(int); }

class MaxEver implements J {

private int m = 0;

public int f(int i) { if(i > m) m = i; return m; }

}

In ML, we encode private state using closures:

(* closures over mutable fields act like objects,

but there is no dynamic dispatch here *)

type J = int -> int

val f : J =

let val m = ref 0

in fn i => ((if i > !m then m := i else ()); !m)

end

CSE341 Winter 2006, Lecture 26 8

'

&

$

%

Wanting both

Could one language support subtype polymorphism and parametric

polymorphism?

• Sure; and the latest generation of OO languages does (Java [1.]5,

C# 2005)

• C++ templates are sort of like parametric polymorphism, but they

duplicate code, so they’re a bit like macros

More interestingly, you may want both at once!

Pt withXZero(Pt p) { return new Pt(0,p.y); }

How could we make a version that worked for subtypes too?

CSE341 Winter 2006, Lecture 26 9

'

&

$

%

Need for Bounded Quantification

Best effort in Java:

interface I { Pt copy(Pt p); }

Pt withXZero(Pt p, I i) {

Pt ans = i.copy(p); ans.x = 0; return ans;

}

class A implements I {

Pt copy(Pt p) { return new Pt3D(p.x,p.y,((Pt3D)p).z); }

void f(Pt3D p) { Pt3D q = (Pt3D)withXZero(p,this); }

}

• copy method has to downcast argument.

• caller of withXZero has to downcast result.

CSE341 Winter 2006, Lecture 26 10

'

&

$

%

Need for Bounded Quantification

Best effort in ML (Pt and Pt3D defined in lec26.sml)

(* withXZero : ((pt->’a) * (’a->pt) * ’a) -> ’a *)

fun withXZero (to,from,v) =

to({x = 0, y = #y (from v)})

fun withXZeroPt p = withXZero(fn x=>x, fn x=>x, p)

fun withXZero3DPt p = withXZero(Pt3D, Pt, p)

• This is tricky.

• Makes 2 temporary “objects” to appease the type system.

CSE341 Winter 2006, Lecture 26 11

'

&

$

%

Bounded Quantification Example

interface I<’a> { ’a copy(’a p); }

’a withXZero(’a p, I<’a> i) where ’a <: Pt {

’a ans = i.copy(p); ans.x = 0; return ans;

}

class A implements I<Pt3D> {

Pt3D copy(Pt3D p) { return new Pt3D(p.x,p.y,p.z); }

void f(Pt3D p) { Pt3D q = withXZero(p,this); }

}

• No downcasts.

• Without the bound, ans.x = 0 would not typecheck.

• At call-sites of withXZero, just check the instantiation for ’a is a

subtype of Pt

CSE341 Winter 2006, Lecture 26 12

'

&

$

%

Bounded quantification in general

In general, in a language with subtyping (t1<:t2) and parametric

polymorphism, a useful generalization of forall ’a. t is

forall ’a<:t1 . t2. This allows fewer instantiations for ’a.

It does raise interesting “beyond 341” questions, e.g., When is

forall ’a<:t1 . t2 a subtype of forall ’a<:t3. t4?

CSE341 Winter 2006, Lecture 26 13

