
'

&

$

%

CSE 341:
Programming Languages

Winter 2006

Lecture 20— Introduction to Smalltalk

CSE341 Winter 2006, Lecture 20 1

'

&

$

%

Today

Why Smalltalk?

Some basics of smalltalk programs

• Syntax

• Messages

• Blocks

• Classes and Methods

• Dynamic Dispatch

• self and super

Section: The Squeak environment (projects, saving your work, etc.)

CSE341 Winter 2006, Lecture 20 2

'

&

$

%

Smalltalk

• Pure object-oriented

• Class-based

• Dynamically typed

A good starting point for discussing what each of these means and

what other languages look like.

The language has been quite stable since 1980.

Other points:

• A tiny language; easy to learn almost all of it

• A complete commitment to dynamic changes; little abstraction

support

CSE341 Winter 2006, Lecture 20 3

'

&

$

%

Overview of Smalltalk

1. All values are objects

• Even numbers, code, and classes

2. Objects communicate via messages (handled by methods)

3. Objects have their own state

4. Every object is an instance of a class

5. A class provides behavior for its instances

This sounds a lot like Java, but smaller.

It’s also much more like Scheme than it seems; we’ll return to “what

really makes something OO”

But first we need to get “the feel for Smalltalk”

CSE341 Winter 2006, Lecture 20 4

'

&

$

%

Syntax

exp ::= atom | assign

| unarySend | infixSend | keywordSend

| (exp) | exp . exp | ^ exp

atom ::= ID | literal | block

literal ::= INTEGER | STRING | ...

block ::= [:ID1 ... :IDn | exp] | [exp]

assign ::= name := exp | name _ exp

unarySend ::= exp ID

infixSend ::= exp OPERATOR exp

keywordSend ::= exp ID1: exp ... IDn: exp

CSE341 Winter 2006, Lecture 20 5

'

&

$

%

Some key ideas

• Really, everything is an object

• Blocks are lambdas

• Return (↑) is special

• Everything is “dynamic” – evaluation can add/remove classes,

add/remove methods, etc.

• Dynamic typing

• Dynamic dispatch

• Sends to self (a special identifier; Java’s this)

CSE341 Winter 2006, Lecture 20 6

'

&

$

%

Protection?

• Fields are inaccessible outside of instance

• All classes and methods are available to everyone

• No namespace management; category has no semantic significance

CSE341 Winter 2006, Lecture 20 7

