CSE 341 Assignment 2
Basra

January 13, 2006

For your second assignment we're going to complete the Basra game. After your implementation, you
would be able to actually play the game! But first you should familiarize yourself with the rules of Basra.

Due: Thursday, January 19, at 11 pm. No late assignments will be accepted. Submit your assignment
using the online turnin link on the course web.

Game Rules

Initially you have a shuffled deck of 52 distinct cards, which is called Deck in the actual program. You
should never worry about checking whether they’re duplicates because there shouldn’t be any.

First, deal four cards from Deck to the player (denoted Hand). Whenever the player plays a card (each
play is a round), another card is dealt from the Deck so that the player always has four cards.

Then deal four cards from Deck to the table (denoted Floor). If Floor has less than four cards after the
player plays a card, cards are dealt from Deck so that Floor always has at least four cards.

At each round, the player looks at Floor and decides which card to play. Two possibilities may result from
this play:

e The played card doesn’t make a ”capture”, and is added to Floor
e The played cards makes a ”capture”
Given that the played card has rank x, a card or a number of cards can be ”captured” from Floor if:

e The captured card has the same rank x, or

e The sum of the rank of captured cards equals to x

If the played card captures all of the cards from Floor, it is called a "sweep” and extra points are given for
each sweep. In each capture, the captured cards, along with the played card, are removed and put to the
Scored stack.

After each round, one card is dealt from Deck to Hand, and if Floor has less than four cards, enough
cards are dealt from Deck to Floor to satisfy the four-card requirement.

The game ends when either of the following is true:
e Both Floor and Deck is empty
e The player’s Hand is empty (which implies that Deck must be empty)

e Floor contains six cards already, and none of the player’s cards can make a capture

When the game is over, the score is calculated by summing earned points from Scored stack:

Each face card (J, Q, K) is worth 2 points
Each non-face card (A, 1 - 10) is worth 1 point

Each sweep is worth 3 points

Gaming tip

A player is not obliged to play a card that makes a capture. As long as Floor has less than 6 cards, the
player can always play a card that doesn’t make a capture and adds it to Floor. However, if the played
card can make a capture, the capture is always performed.

Sorting:

You will be making use of either a Mergesort or Quicksort algorithm in order to sort an array of cards in
this assignment. The following is a description of the Mergesort algorithm:

If the list is of length 1, return the list

If the list is of length greater than 1, split the list into two parts in the middle. This results in two
lists - left and right

Call Mergesort on left, then call Mergesort on right

Once the two parts are returned, merge them into the new array in the following way: While left and
right both have elements in them, if the first element in left is less than the first element in right,
place it on the front of a new list called result. Similarly, if the first element in right is less than the
first element in left, place the first element in right on result. Remove the element that was used, and
repeat the process while building result until either left or right is empty. Once this is the case, if left
has elements remaing, append it to result. Otherwise, append right to result.

Return result

Alternatively, you may elect to use the Quicksort algorithm to sort your list:

If the list is of length 1, return the list
If the list is of length greater than 1, pick a pivot from the center of the list

Split the list into two parts, left and right, such that all elements in left are less than the pivot, and
all elements in right are greater than the pivot. Include the pivot in the left list.

Recursively call quicksort on the left and right lists

Return the result of appending the lists in the following order: left, right.

Functions to implement:

Now that you’ve already learned about types and datatypes, we're using new types and datatypes to
represent a single card and a list of cards:

datatype suit = Spade | Heart | Diamond | Club

type rank = int

type card = suit * rank

type cards = card list

Note that in the skeleton code provided to you, those functions that you worked with in homework 1 have
been modified to adapt to this new type system.

You will be implementing the following functions. Since your functions will be used throughout the game,
you must implement the parameters in the given order. You will always assume that the passed-in
parameters are valid.

1. capture(floor : cards,card : card) - given floor, which is a valid Floor, and card, which is a valid
card played by the player, return a list with a sublist of cards such that each sublist is a valid capture
from Floor. For this function, the sublists should not overlap each other. That is, if a card exists in
one sublist, it should not exist in any other sublist returned by this function.

2. isGameOwver(deck : cards, floor : cards, hand : cards) - given deck, which is a valid Deck, and floor,
which is a valid Floor, and hand, which is a valid Hand, return true if the end-game condition is
satisfied (see game rule), and false otherwise.

3. produceShuf fledDeck() - For this function, you should generate a shuffled deck of cards. You will
be provided with the function produceUnshuf fledDeck(), which will produce a deck that is in
perfect order by suit and rank. In addition to that function, you will also be provided with the
function get RandomInt(max) which will produce a random integer between 1 and max inclusive.
Using these two functions and any helper functions that you require, create a deck that has been
shuffled randomly.

4. sort(cardList : cards) - Given a valid list of cards cardList, utilize a Mergesort or Quicksort
algorithm to sort the cards by suit and rank. Cards are ranked first by suit, and then by their rank.
The resulting list should contain the cards in order of their suits starting with Spades, followed by
Hearts, Diamonds, and finally Clubs. Within a suit, cards should be ordered by rank starting with
Aces and going up to Kings. For example, if you were asked to sort the list [(Diamond, 4), (Spade,
2), (Club, 7), (Spade, 5), (Diamond, 1)], you should return the list [(Spade, 2), (Spade, 5), (Diamond,
1), (Diamond, 4), (Club, 7)]. In order to implement this function, you will need to have some way of
comparing two cards. You may either use the provided functions for comparison or write your own.

You should use pattern matching in your functions.

Bonus

As an extension to the above parts of the project, it is possible to offer the user a choice of which set of
cards he/she would like to capture from the floor in ambiguous situations. To lay the groundwork for such
functionality, you can write the following function:

produce AllCaptures(floor : cards,aCard : card) - This function is similar in behavior to capture, but it
must return all possible sublists that are valid captures, including overlapping sets of cards. For example, if
the floor provided consists of the following cards: [(Spade, 1), (Heart, 1), (Diamond, 1), (Diamond, 2)] and
the card played is (Diamond, 3), you should return a list with the following combinations: [[(Spade, 1),
(Diamond, 2)],[(Heart, 1), (Diamond,2)], [(Diamond,1),(Diamond,2)],[(Spade,1),(Heart,1),(Diamond,1)]].
This result occurs because you can pair up any of the three cards with rank 1 with the card with rank 2,
and also because you could use all three cards with rank 1 to make a total of 3. The order of the cards in
the lists and the order in which the lists are returned is not important.

How to write and compile the game:

You will be given a file named basra_full.sml, which contains the entire game code, with the exception
that the three functions you are to implement are left empty. To test your own four functions, you should

first write them in a separate basra_work.sml file, and after testing it, copy the three functions to
basra_full.sml.

Then, in sml, type
use "basra_full.sml”

You should see under the same directory a compiled stand-alone executable Basra.< arch — type >, where
< arch — type > depends on the machine you're using (ex: under linux it would be Basra.x86-linux).

To run the executable, in your command line (or shell), type
sml @SMLload=Basra.< arch — type >
and start playing!

To turn in your homework, submit basra_full.sml.

Sample Log:
Below is an sample execution log;:

- val z: cards = [(Spade, 1), (Spade, 2), (Spade, 3), (Spade, 7)];

val x = [(Spade,1),(Spade,2),(Spade,3),(Spade,7)] : cards

- val y: card = (Heart, 3);

val y = (Heart,3) : card

- capture(z, y);

val it = [[(Spade,3)],[(Spade,1),(Spade,2)]] : cards list

- val z: cards = [(Spade, 5), (Heart, 3), (Heart, 11), (Club, 1)];

val x = [(Spade,5),(Heart,3),(Heart,11),(Club,1)] : cards

- capture(z, (Club, 2));

val it = [] : cards list

- val floor=[(Spade, 1), (Club, 3), (Spade, 6), (Spade, 13), (Diamond, 9), (Diamond, 11)];
val floor = [(Spade,1),(Club,3),(Spade,6),(Spade,13),(Diamond,9),(Diamond,11)] : (suit * int) list
- val hand = [(Spade, 5), (Heart, 5), (Diamond, 5), (Club, 2)];

val hand = [(Spade,5),(Heart,5),(Diamond,5),(Club,2)] : (suit * int) list

- isGameQuer(nil, floor, hand); #note: Deck is set to nil for testing, not possible in reality
val it = true : bool

- sort(floor);
val it = [(Spade,1),(Spade,6),(Spade,13),(Diamond,9),(Diamond,11),(Club,3)] : cards

Type Summary:

A correct solution of your four implemented functions will cause these bindings to be printed in the
read-eval-print loop:

val capture = fn : cards * card — cards list

val isGameOver = fn : card list * card list * card list — bool
val produceShuffledDeck = fn : unit — cards

val sort = fn: cards — cards

Keep in mind that getting the right bindings does not necessarily indicate that your code is correct. You
need to test your functions to verify that your code performs the way it is supposed to.

Assessment:

The homework that you turn in will be graded based on the following:

e Correctness - The code should perform the functions described above

e Style - You should exhibit good style in your coding. Pay particular attention to indentation and
commenting. If you are doing something that may be unclear to someone reading the code, you
should comment that section and explain what you are doing.

e Do not use material not covered in class. You should make good use of pattern matching, in addition
to material covered earlier, to complete this assignment.

