
CSE341 Spring ’06 Due Wednesday, April 19
Assignment 2

For this homework your solutions must use pattern-matching. Don’t use the functions hd, tl,
null or anything containing the # character. Similarly, don’t use if-then-else in places where
pattern matching will suffice (although there are a small number of places where you will need
if-then-else). Don’t include types in function declarations unless necessary; ML’s type inference
should suffice in nearly all cases.

1. In the following we will represent sets as lists.

(a) Consider the following.

infix mem
fun x mem [] = false
| x mem (y::ys) = x=y orelse x mem ys

fun newmem(x,xs) = if (x mem xs) then xs else x::xs

Type these up and include them in your turn-in. In a comment near these functions,
answer the following three questions. What is the result of newmem(2,[1,2])? Of
newmem("apple" ,["orange","banana"])? Describe in your own words what these
functions do, using only one sentence for each function.

(b) Write a function setof that takes a list of items, possibly with duplicates, and returns a
list with all the duplicates removed. For example, setof [1,2,3,2] =>[1,2,3]. Hint:
use newmem. The order of items in the output list doesn’t matter.

(c) Write an infix function union that computes the union of two lists of items when viewed
as sets. [1,2,3] union [2,3,4] evaluates to [1,2,3,4] (perhaps in a different order).

(d) Write an infix function isect that computes the intersection of two lists of items when
viewed as sets, evaluating [1,2,3] isect [2,3,4] as [2,3] (or [3,2]).

(e) What is the main advantage of not declaring the argument types of these functions?
Include the answer as a comment after your definition of isect.

(f) Is your isect function tail-recursive? Explain why or why not in another comment.
Then write an alternate version of it named isect alt that is tail recursive if isect is
not, or vice versa. (“Accumulator style” might be useful for one or the other of them.)
In another comment, give an example (executable code) where the output order differs
between the two functions, or explain why they are always the same.

2. In the rest of this assignment we’ll look at Boolean expressions, such as:

true And (false Or Not false)
Not x And (true Or x)

Because the first expression contains only the constants true and false, we say it is an
expression over constants. It evaluates to true. The second expression contains a variable x;
we have to bind a value to x before we can evaluate the expression. We say that x is free in
the expression. We can bind free variables to constants, for example binding x to true in the
expression (Not x And (true Or x)) gives Not true And (true Or true), which
evaluates to false. If we bound x to false, the expression would evaluate to true.

We say that an expression is constant if it contains no free variables. A constant expression
can be evaluated without having to bind anything.

1



To express a Boolean expressions in ML, we will use the following data type.

datatype ’a expr =
Const of bool

| Var of ’a
| Not of ’a expr
| And of ’a expr * ’a expr
| Or of ’a expr * ’a expr

exception UnboundVar

For this assignment, we’ll use only string expr. Thus, the ML expression that’s the same as
the second example above is And(Not(Var "x"),Or(Const true, Var "x")). (But in your
next homework we’ll generalize this to Boolean expressions over objects other than strings.)

(a) Write a function free vars that takes an expression and returns a string list of any
free variables. Variables should not be repeated even if they appear multiple times; use
the set functions above.

(b) Write a function eval that takes a constant expression and returns its value. If eval is
passed a function with free variables, it should raise an UnboundVar exception.
Note: a natural way to solve this problem will evaluate Or(Const true,Var "x") as
true even though it’s not really a constant expression. That’s okay. The same solution
will raise an exception if passed Or(Var "x",Const true), even though it’s the same
expression as before. That’s okay too. The point of this problem is to get practice in
evaluating things, not figuring out the type of an expression.

(c) Write a function bind1 that takes a variable, a Boolean value and an expression, and
returns an expression with all instances of the variable bound to the truth value. It
should be a curried function. For example,

bind1 "x" true (And(Var "x",Or(Var "y", Var "x")))
--> And(Const true,Or(Var "y", Const true))

bind1 "x" true (And(Var "z",Or(Var "y", Var "z")))
--> And(Var "z",Or(Var "y", Var "z"))

(d) bind1 is nice, but not very general. For example, we couldn’t use it to change some
variable in an expression to a different variable or sub-expression. Write a function bind
that takes a function binder and an expression e, applies binder to the argument of
each Var in e, and leaves the rest of the expression unchanged. binder should take the
value from a Var and return an expression.
Then write functions bindvar and changevar using bind so that bindvar is equivalent
to bind1, and changevar is similar except that variables are changed. For example,

bindvar "x" true (And(Var "x",Or(Var "y", Var "x")))
--> And(Const true,Or(Var "y", Const true))

changevar "x" "help" (And(Var "x",Or(Var "y", Var "x")))
--> (And(Var "help",Or(Var "y", Var "help")))

(e) Write a function satisfying assignments that takes an expression and returns a
(string*bool) list list of all satisfying assignments, if any exist. For example,

satisfying_assignments (And(Not(Var "x"),Or(Const true, Var "x")))
--> [[("x",false)]]

2



satisfying_assignments (And(Not(Var "x"),Or(Const false, Var "x")))
--> nil

satisfying_assignments (Or(Var "x", Var "y"))
--> [[("x",true),("y",true)],[("x",true),("y",false)],

[("x",false),("y",true)]]
satisfying_assignments (Const true)

--> [[]]
satisfying_assignments (Const false)

--> []

Hint: write a local function that takes an expression and a list of its free variables. If
the list is empty, evaluate the expression; otherwise recurse, using map and @ (append)
to build the new bindings lists. My implementation of this function is 11 lines.

There’s not that much code to write—under 100 lines in my solution—but they require careful
thought. Start early. Don’t just settle for your first answer. Revise, experiment, play with it.

Extra Credit

Extend your solution to handle the quantifiers Exist and All. E.g.,
Exist("x",And(Not(Var "x"),Or(Const true, Var "x"))) evaluates to true, whereas
All("y",Exist("x",And(Not(Var "x"),Or(Var "y", Var "x")))) evaluates to false.

Type Bindings

Your solution should generate the following bindings (or their synonyms).

datatype ’a expr
= And of ’a expr * ’a expr
| Const of bool
| Not of ’a expr
| Or of ’a expr * ’a expr
| Var of ’a

exception UnboundVar
infix mem union isect
val mem = fn : ’’a * ’’a list -> bool
val newmem = fn : ’’a * ’’a list -> ’’a list
val setof = fn : ’’a list -> ’’a list
val union = fn : ’’a list * ’’a list -> ’’a list
val isect = fn : ’’a list * ’’a list -> ’’a list
val free_vars = fn : ’’a expr -> ’’a list
val eval = fn : ’a expr -> bool
val bind1 = fn : ’’a -> bool -> ’’a expr -> ’’a expr
val bind = fn : (’a -> ’b expr) -> ’a expr -> ’b expr
val bindvar = fn : ’’a -> bool -> ’’a expr -> ’’a expr
val changevar = fn : ’’a -> ’’a -> ’’a expr -> ’’a expr
val satisfying_assignments = fn : ’’a expr -> (’’a * bool) list list

3


