
'

&

$

%

CSE 341:
Programming Languages

Winter 2005

Lecture 3— Let bindings, options, and benefits of no mutation

CSE341 Winter 2005, Lecture 3 1



'

&

$

%

Let bindings

Motivation: Functions without local variables can be poor style and/or

really inefficient.

Syntax: let b1 b2 ... bn in e end where each bi is a binding.

Typing rules: Type-check each bi and e in context including previous

bindings. Type of whole expression is type of e.

Evaluation rules: Evaluate each bi and e in environment including

previous bindings. Value of whole expression is result of evaluating e.

Elegant design worth repeating:

• Let-expressions can appear anywhere an expression can.

• Let-expressions can have any kind of binding.

– Local functions can refer to any bindings in scope.

CSE341 Winter 2005, Lecture 3 2



'

&

$

%

More than style

Exercise: hand-evaluate bad_max and good_max for lists [1,2]

[1,2,3], and [3,2,1].

CSE341 Winter 2005, Lecture 3 3



'

&

$

%

Summary and general pattern

Major progress: recursive functions, pairs, lists, let-expressions

Each has a syntax, typing rules, evaluation rules.

Functions, pairs, and lists are very different, but we can describe them

in the same way:

• How do you create values? (function definition, pair expressions,

empty-list and ::)

• How do you use values? (function application, #1 and #2, null,

hd, and tl)

This (and conditionals) is enough for your homework though:

• andalso and orelse help

• You need options (next slide)

• Soon: much better ways to use pairs and lists (pattern-matching)

CSE341 Winter 2005, Lecture 3 4



'

&

$

%

Options

“Options are like lists that can have at most one element.”

• Create a t option with NONE or SOME e where e has type t.

• Use a t option with isSome and valOf

Why not just use (more general) lists? An interesting style trade-off:

• Options better express purpose, enforce invariants on callers,

maybe faster.

• But cannot use functions for lists already written.

CSE341 Winter 2005, Lecture 3 5



'

&

$

%

You want to change something?

There is no way to mutate (assign to) a binding, pair component, or

list element.

How could the lack of a feature make programming easier?

In this case:

• Amount of sharing is indistinguishable

– Aliasing irrelevant to correctness!

• Bindings are invariant across function application

– Mutation breaks compositional reasoning, a (the?) intellectual

tool of engineering

CSE341 Winter 2005, Lecture 3 6


